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ABSTRACT

In this thesis, we present an approach to automating the creation of land use and

land cover (LULC) maps from satellite images using deep neural networks that were

developed to perform semantic segmentation of natural images. This work is impor-

tant since the production of accurate and timely LULC maps is becoming essential

to government and private companies that rely on them for large-scale monitoring of

land resource changes. In this work, deep neural networks are trained to classify each

pixel of a satellite image into one of a number of LULC classes.

The presented deep neural networks are all pre-trained using the ImageNet Large-

Scale Visual Recognition Competition (ILSVRC) datasets and then fine-tuned using

∼19,000 Landsat 5/7 satellite images of resolution 224 × 224 taken of the Province

of Manitoba in Canada. The initial results achieved was 88% global accuracy. Fur-

thermore, we consider the use of state-of-the-art generative adversarial architecture

and context module to improve accuracy. The result is an automated deep learn-

ing framework that can produce LULC maps images significantly faster than current
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semi-automated methods.

The contributions of this thesis are the observation that deep neural networks

developed for semantic segmentation can be used to automate the task of producing

LULC maps; extensive experimentation of different FCN architectures with exten-

sions on a unique dataset; high classification accuracy of 90.46%; and a thorough

analysis and accuracy assessment of our results.

Keywords: Deep Learning, Land Use, Land Cover, Maps, Classification, Deep Con-

volutional Neural Networks, Satellite Images.
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Chapter 1

Introduction

Due to the decreasing cost and increasing resolution of satellite images, many gov-

ernment and private industries are turning to Land Use and Land Cover (LULC)

maps as an important tool for large-scale monitoring of land resource changes. These

maps are vital in areas such as flood forecasting, urban and rural land-use planning,

resource management, and disaster management and planning [1]. Land cover refers

to natural assets present on the earth’s surface (e.g. water bodies, vegetation, bare

soil) while land use refers to man-made areas that utilize land cover resources (e.g.

roads, agriculture, urban infrastructures). Satellite imagery or remote sensed im-

agery in general contain tangible information in the form of features which can be

extracted to provide a basis for analysis and processing. The various satellite sensors

(e.g. SPOT, IRS, Landsat, IKONOS) available today provide a wide variety of satel-

lite data based on spatial, spectral and temporal features. The quality of features

of satellite data are characterized by their spatial, spectral and temporal resolutions.

For instance, each pixel may correspond to an area on the ground (e.g. 30m × 30m

satellite image means each pixel represents a small square on ground of that size).

Spectral resolution, on the other hand, refers to the magnitude of light energy emitted

from an object on the ground recorded in different frequency and bands.

The process of creating LULC maps is initiated by classifying features into land

use or land cover types and is one of the most common applications of remote sensing.

Machine learning, and in particular, deep learning has proven to be a major break-

through for remote sensing [2]. Deep learning uses deep neural network (DNN) which

are characterized by a neural network with many more layers and many more param-

eters than a traditional neural network [3]. The use of deep learning algorithms to

solve previously existing problems has been increasingly popular and successful in the
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last decade [4, 5]. Successful application of DNNs in various fields include robotics [6],

speech recognition [7], image processing [8], natural language processing [9]. DNN

applications in remote sensing and geoanalytics can be in categorized in the following

four core areas : image preprocessing, pixel-based classification, target recognition,

scene understanding. Recent surveys on deep learning for remote sensing can be

found in [2, 10].

Deep Convolutional Neural Network (DCNN) pioneered by [11] is a variant of

traditional neural networks where the inputs to the network are images. The term

Convolutional implies that this network consists of layers performing the mathemat-

ical operation of convolution generally used in digital signal and image processing.

Specifically, Deep Convolutional Neural Networks (DCNNs) have excelled in computer

vision problems [12, 13]. The problem of semantic segmentation translates directly

to the problem of LULC mapping in which satellite image pixels are classified into

a number of LULC classes. LULC classification typically aims to assign global la-

bels to scenes, in this process spatial information is discarded from the output. In

contrast, LULC map production involves producing maps in which spatial informa-

tion is duly represented to present contextual meaning. Research related to LULC

classification and deep learning include [14, 15, 16], and those related to LULC map

production include [17, 18, 19]. Most studies considering LULC map production em-

ploy traditional unsupervised, semi-supervised, supervised (per-pixel or object based)

approaches like K-means Clustering, Decision Tree and Maximum Likelihood Classi-

fier [20] and require considerable user input to ensure high classification accuracies.

These semi-automated approaches can be prone to error, take a significant amount

of training and classification time, and suffer from a lack of consistency – especially

when multiple analysts are involved in the process and/or when dealing with large

multi-scene areas. Moreover, it is difficult to improve accuracy and efficiency of these

methods as they typically rely on pixel pattern matching and manual user input.

One of the most exciting ideas in deep learning in recent times is the notion of

dueling Neural Networks proposed by Ian Goodfellow. This is known as the generative

adversarial network (GAN). This architecture takes two neural networks and pits

them against each other in a digital cat-and-mouse game1. In this thesis, a case-

study exploring two architectures (DCNN and GAN) for LULC map production of

Landsat 5/7 multi-spectral satellite image dataset is presented. Both spatial and

spectral information of medium resolution (30m) and multispectral (6 bands) satellite

1https://www.technologyreview.com/lists/technologies/2018/
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imagery are used.

1.1 Problem Definition

In [21, 22], fully convolutional network (FCN) originally developed by [23] for semantic

segmentation was modified and adapted for automating the production of LULC

maps on the Landsat 5/7 Manitoba satellite image data. Specifically, FCN-8 Visual

Geometry Group (VGG-16), Conditional Random Fields (CRFs)-RNN, and Dilation

8 (both frontend and context) networks were used. The best global accuracy achieved

was 88%. In this thesis, we consider the use of state-of-the-art generative adversarial

network architecture for producing LULC maps from Landsat 5/7 Manitoba satellite

image data to improve the accuracy of classification of LULC maps.

1.2 Proposed Approach

We take advantage of the ability of DCNNs to learn low-level and high-level features in

a hierarchical topology to produce desired output. In the proposed process, each pixel

in a satellite image must be classified into a number of LULC classes (e.g. deciduous

forest, marshland, fens, etc.. This process directly maps to Semantic Segmentation

which is understanding an image at a pixel level by associating each pixel to a number

of predetermined classes (e.g. chair, dog, cat). Our approach presented here is based

on the Fully Convolutional Network introduced in [23].

In this thesis, we use three DCNNs (VGGNet [24], GoogLeNet [25], ResNet [26])

referred to as base networks for LULC mapping and analysis (see, Fig 1.1). The

networks examined in this paper were originally designed for image classification and

object detection tasks. We adapt the base networks into FCNs (labelled as FCN-

[VGG, ResNet, GoogLeNet]) that take arbitrary sized input and produce spatial

output maps [23]. We introduce two specific extensions to the base networks: a

context module and an adversarial extension. The context-module developed by [27] is

a standalone plug-in that aggregates context information for better performance. This

module was used to extend our base networks for improved performance. The second

extension involves positioning the base networks in an adversarial setting [28] by

adding a discriminator network. This ensemble of base networks and their extensions

form our proposed deep learning framework. The motivation for this work is three

fold:
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Base Networks:

FCN-VGG16, FCN-ResNet,

FCN-GoogLeNet

Base Networks

+

Adversarial Extension

Base Networks

+
Context Module Extension

Labelled 

Sub-Images

Accuracy Assessment 

Data Augumentation

+

Preparation

LULC Map

Multispectral Satellite Image

Post-processing: 

Stitching  

Figure 1.1: Overview of proposed deep learning framework for LULC mapping and
analysis

• To propose a generalized deep learning framework to reduce the time spent by

GeoManitoba on producing LULC maps.

• To investigate and compare deep learning architectures to obtain high classifi-

cation accuracy.

• To observe the effectiveness of deep learning neural networks in remote sensing

and geoanalytics application.

1.3 Contributions

Our contributions are the following:

• The observation that deep neural networks developed for semantic segmentation

can be used to automate the task of producing LULC maps.

• Extensive experimentation of different FCN architectures with extensions on a

unique dataset.

• High classification accuracy 90.46% achieved by our approach.
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• A dramatic reduction in the time it take to produce these LULC maps (from

4800 hours to 8 minutes and 42 seconds).

• A thorough analysis and accuracy assessment on results of our deep learning

framework both quantitatively and qualitatively.

1.4 Thesis Layout

The rest of this thesis is outlined as follows:

Chapter 2 describes the foundations of Neural Networks and Convolution Neural

Networks in a limited scope, covering areas that relates to our proposed solution.

It also includes the training process of deep learning networks.

Chapter 3 reviews relevant related works.

Chapter 4 covers the proposed base networks for LULC map production. It also

includes our proposed novel extensions to the base networks.

Chapter 5 gives the implementation details discussing data acquisition, preparation,

augmentation and the experimental setup.

Chapter 6 provides the results, analysis and comparisons based on quantitative and

qualitative evaluations.

Chapter 7 concludes the thesis, summarizes the work done and provides possible

future research directions.
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Chapter 2

Foundations

In this chapter, we discuss the foundations of Neural Networks (NNs) describing

briefly their loose relationship with biological processes and their abstraction and

formulation. Subsequently we discuss the “Deep” Convolutional Neural Network, a

variant of traditional NNs popularly used in computer vision tasks. We describe the

layers present in a “Deep” Convolutional Neural Network and their functions. Lastly,

we describe the learning and training process of deep learning models such as “Deep”

Convolutional Neural Network.

2.1 Neural Network

A single layer neural network also called a Perceptron [29] shown in Fig. 2.1, con-

siders a set of input and computes its weighted sum. The output of the weighted

sum is passed through a linear/nonlinear function which acts as a threshold that

triggers response in form of an output. Biological processes are often used as sources

of inspiration for solving computational problems [30]. Neural networks (NNs) follow

this narrative in that NNs are inspired by biological nervous systems. Although this

connection is loose in that the NNs only share some key similarities with its bio-

logical counterparts, otherwise NNs are constricted to a mathematical abstraction.

One such similarity is that the building blocks of both systems are computational de-

vices or neurons that are highly interconnected, and the connections between neurons

determine the function of the network [31].

In the perceptron diagram of Fig. 2.1, the inputs are denoted by x0,x1,x2, . . . ,xn

with corresponding weights denoted by w0,w1,w2, . . . ,wn. An applied bias is de-
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noted by b and f connotes activation function, while y represents output. Subse-

quently, a perceptron is mathematically expressed as

y = f(wi · xi + b). (2.1)

From Eq. (2.1) f is a step function given as

f(·) =

1, if wi · xi + b > 0

0, otherwise,
(2.2)

that defines behavior of the perceptron as a binary classifier.

Activation
function(f)

Output(y)
∑
b

w2x2

...
...

wnxn

w1x1

w0x0

inputs weights

bias

Figure 2.1: A single layer Neural Network also know as a Perceptron.

The perceptron can be trained iteratively to classify a set of inputs. A learning

rule is applied to a perceptron by adjusting its weights and biases towards a particular

goal. The perceptron learning rule was developed by Rosenblatt [29], and is presented

in Algorithm 2.1.0 [32]. The single layer neural network provides intuition for solving

very simple computations and can only classify linearly separable sets of vectors. The

limitations of a single layer perceptron was pointed out by Minsky and Papert [33].

However, stacking multiple layers of perceptrons produces very powerful models able

to tackle complex tasks and overcome the inadequacies of a single layer perceptron.

A multi-layer perceptron (MLP) shown in Figure 2.2 combines two or more per-

ceptrons into a single framework. This multi-layer neural network consists of at least

one hidden layer of neurons that is not directly connected to both the input nodes

and output nodes [32]. This network is capable of approximating non-linear func-

tions and thus finds more applications than a perceptron. The success in training
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Algorithm 2.1.0 Perceptron learning algorithm.

1: Initialize weights wi(0)(0 ≤ i ≤ N − 1) and bias b to small random values. Here
wi(n) is the weight from input i at iteration n and b is external bias.

2: Activate perceptron by applying input x0,x1,x2, ...xN−1 with desired output d(n)
3: Calculate output y of the perceptron

y = f(
N−1∑
i=0

wixi + b)

4: Update weights

wi(n+ 1) = wi(n) + η[d(n)− y(n)]xi(n)

where

d(n) =

{
1, if y = wi(n)xi(n) + b > 0

0, otherwise,

η is learning-rate parameter, a positive constant less than unity.
5: Repeat step 2 for each input

MLPs stems from the backpropagation algorithm re-introduced in [34]. MLPs learn-

ing procedure assumes a surpervised learning paradigm in which they are trained on

a set of input-target pairs using iterative optimization algorithms (e.g., Gradient De-

scent) to minimize differences (error) between target and predicted value. The error

described as a cost function can be modeled in variety of ways (e.g., Mean Square

Error) depending on the task. Backpropagation in itself is a differentiation algorithm

for computing derivative of multivariate function (gradients). The learning process

of MLPs using backpropagation algorithm incorporates two distinct stages; the first

stage where error between predicted and target is propagated backwards through the

network in order to evaluate derivatives and the second stage of weight adjustment

using the calculated derivatives [35].

2.2 Deep Convolutional Neural Network

Deep Convolutional Neural Network (DCNN) pioneered by [11] is a variant of tradi-

tional NNs that builds upon MLPs. The term “Deep” connotes multiple layers and

“Convolutional” represents layers preforming the mathematical operation convolu-

tion generally used in digital signal and image processing. Like its counterparts in
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x0

x1

...

xN

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

. . .

. . .

. . . y
(L)
0

y
(L)
1

...

y
(L)

m(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
C

input layer
1st hidden layer Lth hidden layer

output layer

Figure 2.2: A multi-layer perceptron with N input units and C output units. The lth

hidden layer contains m(l) hidden units.

Input Layer � �³

Hidden Layer � ��

Hidden Layer � ��

Output Layer � �¹

(a) (b)

Figure 2.3: (a). Traditional Neural Network (b). DCNN showing a 3D arrangement
of neurons. A traditional neural network have all neurons fully connected from layer
to layer while the neurons of DCNNs are connected to local regions from layer to
layer [36].

Section 2.1, it is inspired by biological processes. DCNNs are structured differently

from MLPs; they are designed to take input as images. Assuming a digital image

with dimensions width (w), height (h), depth (d), the neurons present in the layers

of a DCNN are arranged in 3 dimensions: (h×w×d) (see e.g. Fig. 2.3). Considering

high-dimensional input such as images, the fully connected neurons arrangement in

MLPs becomes computationally expensive and impractical; DCNNs alleviates this

problem with its arrangement of neurons connecting to local regions of input vol-

ume in which weights are shared [36]. These properties among others, makes DCNN

invariant to geometrical transformations that may be present in image inputs.

The computational power of DCNN lies in their building components which con-

sists of various layers performing different operations. Using ALexNet [12] DCNN

model as a case study, we describe the building layers of DCNNs in detail in the

following Sections.
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2.2.1 Convolutional Layer

This layer performs convolution operations on input to yield output feature maps (see

e.g. Fig 2.4). The local connectivity of the neurons present in this layer is charac-

terized by the local receptive field of the neuron referred to as kernel/filter size [36].

The filter size is a hyper-parameter decision dependent on the architectural design

of the DCNN. Given an image of any dimension size (e.g. [227 × 227 × 3]) we can

compute the spatial dimension size of the output feature map following a convolution

operation. Given the following parameters: Height of input image Hi = 227, Width

of input image Wi = 227, Depth of input image Di = 3, Number of Filters K = 96,

Filter size F = 11, Stride S (i.e. the number of pixels the filter slide in each spatial

dimension) = 4, Padding P (i.e the number of pixels (zeros) added to border of the

input) = 0,

Width of output Wo =
(Wi − F + 2P )

S
+ 1, (2.3)

Height of output Ho =
(Hi − F + 2P )

S
+ 1, (2.4)

Depth of output Do = K, (2.5)

based on AlexNet architecture the resulting dimension size of the output feature map

is [55× 55× 96]. The number of neurons in this layer is 55 ∗ 55 ∗ 96 = 290, 400. The

weight sharing that occurs in this layer implies that the neurons in each depth slice

uses the same weights and bias; this means F ∗ F ∗Di weights per filter, for a total

of (F ∗ F ∗ Di + 1) ∗ K weights and biases (parameters) [36]. Thus, the amount of

parameters present in this layer is 34, 944.

Briefly, we discuss other miscellaneous convolution operations Dilated Convolution

and Transpose Convolution implemented in this thesis.

Dilated Convolutions

Dilated convolution also know as atrous convolution incorporates an additional hy-

perparameter called dilation “rate” d that inflates the filter described in Section 2.2.1

by inserting spaces between the filter elements, usually there are d−1 spaces inserted

between kernel elements such that d = 1 corresponds to a regular convolution [37].
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input image
or input feature map

output feature maps

Figure 2.4: Illustration of a single convolutional layer. If layer l is a convolutional
layer, the input image (if l = 1) or a feature map of the previous layer is convolved
by different filters to yield the output feature maps of layer l.

We can reformulate the filter size F in this context as F̂ = F +(F −1)(d−1). Substi-

tuting F in Eqs. (2.3) and (2.4) while following the convolution operation described

in Section 2.2.1 effectively computes the dimension size of the output feature map in

this context.

Transpose Convolution

Transpose convolution also known as deconvolution or fractionally strided convolu-

tion attempts to recover the spatial size of its initial input volume or feature map

while performing a convolution operation. This is very important because it projects

feature maps to a higher-dimensional space useful in Encoder-Decoder architectures

described in Section 4.1. For instance, we attempt to recover the initial spatial reso-

lution of the output feature map obtained in Section 2.2.1. By reworking Eqs. (2.3)

and (2.4) into

Width of output Ŵo = S(Hi − 1) + F, (2.6)

Height of output Ĥo = S(Hi − 1) + F, (2.7)

where Wi & Hi = 55 equivalent to the output spatial (H ×W ) resolution size from

Section 2.2.1, by plugging in the values we recover our initial input spatial resolution

as [227× 227].



12

2.2.2 Non-Linearity Function

The convolution layer is usually followed with a non-linear function which may or

may not be described as a layer. Also known as an activation function, this function

activates/fires neurons based on the satisfaction of its set conditions or properties. At

the convolutional layer the output computed is a set of linear activations after which a

non-linear function is applied to introduce non-linearity in the system. A popular non-

linear function applied in DCNNs is Rectified Linear Unit (ReLU) introduced by [38].

The ReLU applies a function f(x) = max(0, x) (see e.g. Fig 2.5) to all components

of an input volume or feature map. Other non-linear activations functions that exists

are logistic function a.k.a sigmoid, hyperbolic tangent (tanh) and Leaky ReLU 1. The

AlexNet model uses the ReLU activation function.

-2 -1 0 1 2
-1

0

1

2

x

f(x)

ReLU(x)

Figure 2.5: Visual representation of a ReLU activation function.

2.2.3 Pooling Layer

In this layer, sub-sampling is performed on input volume by using a pooling function

which replaces components of an input volume or feature map at a certain location

with a summary statistic (Max, Sum or Average) of the nearby elements. It could be

used to perform spatial reduction on feature maps while preserving important details.

The most common pooling operation is Max Pooling which computes the maximum

output within a rectangular neighborhood [3] (see e.g. Fig 2.6), AlexNet model uses

this operation. Pooling introduces the property of translation invariance to DCNNs.

1http://cs231n.github.io/neural-networks-1/



13

This means with pooling incorporated in a DCNN, it is able to detect geometrical

shifts and translation of objects present in a feature map.

feature maps
layer (l − 1)

feature maps
layer l

Figure 2.6: Illustration of a pooling and subsampling layer. If layer l is a pooling and
subsampling layer and given m

(l−1)
1 = 4 feature maps of the previous layer, all feature

maps are pooled and subsampled individually. Each unit in one of the m
(l)
1 = 4 output

feature maps represents the maximum within a fixed window of the corresponding
feature map in layer (l − 1).

Other layers typically implemented in deep convolutional “classification” networks

such as AlexNet are Dropout and Fully-Connected Layers.

Dropout Layer

A DCNN model must be able to perform well on previously unseen inputs, this is

called generalization; usually this is not always the case with Overfitting and Under-

fitting factors posing as problems to this property [3]. Underfitting occurs when the

model fails to capture the underlying distribution of the training set, while Overfit-

ting occurs when the model fits too well to the training set and fails to generalize

on test data previously unseen. Both factors lead to poor results. In order to tackle

overfitting a regularization technique is employed. Regularization in this context is

any modification made to a learning algorithm or model in order to prevent the risk

of overfitting. A Dropout layer is introduced as a regularization technique to tackle

overfitting. The central idea to this approach involves “dropping out” neurons along

with their connections to reduce co-adaptations of neuron units [39].
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Fully-Connected Layers

This layer basically replicates a traditional neural network as neurons are fully in-

terconnected to each other. They can better summarize information processed by

lower-level layers in view of final output [14].

2.3 Training

Similarly, to MLPs described in Section 2.1 the learning procedure of DCNNs involves

adjusting weights based on a loss or cost function to approximate a target function.

This training and learning process proceeds in a number of steps; formulating a loss

function to model differences between approximate (predicted) and target, choosing

an iterative optimization algorithm to minimize error, random initialization of weights

and finally backpropagation of errors to adjust weights accordingly.

2.3.1 Loss Function

The formulation of a loss function is implied based on the specific task of interest.

DCNNs are often used for classification tasks (two class (binary) or multi-class classi-

fication problems). Common loss functions include mean squared error (L2 loss) and

cross entropy loss functions. Given n number of classes, ŷ is a vector of n predictions

generated from input vector x and y is the vector of n true labels, the mean squared

error(MSE) loss function `mse is computed as

`mse(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2, (2.8)

similarly, cross entropy loss function `H is computed as

`H(y, ŷ) = −
n∑

i=1

yi ln(ŷi). (2.9)

The majority of popular DCNNs such as AlexNet used in image classification

employ the cross entropy loss function.
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θ0

θ1

θ2

θ3

θ4

θ∗

Figure 2.7: Illustration of gradient descent given a sequence of θ0,θ1,θ2,θ3, . . . ,θn+1

assuming θ∗ as stationary point which represents a local minimum in which ` = 0.

2.3.2 Optimization

After defining a loss function, the next step to training a model is optimization which

involves minimizing the loss function. Gradient Descent is an iterative optimization

algorithm popularly deployed in machine learning/deep learning whose goal is to find

optimal parameters weights denoted as θ for minimizing a loss function. Given a loss

function `(θ) parameterized with θ the partial derivative is computed as ∂`
∂θ

showing

the slope of the loss function with-respect-to (w.r.t) to θ (see, e.g. Fig 2.7). In

order to minimize `, we move/step in the direction of the negative gradient. The

gradient of ` w.r.t θ is the vector containing all of the partial derivatives, denoted

by G = ∇θ`(θ). Subsequently, given a learning rate η which is a positive scalar

determining the movement size [3] the gradient descent is computed as

θ′ = θ − η∇θ`(θ).

There are variations of the gradient descent algorithm depicted in Algorithm 2.3.1 [40]

that builds upon its basic implementation (e.g. Batch Gradient Descent, Stochastic

Gradient Descent, Mini-batch Gradient Descent). Furthemore, in deep learning vari-

ous gradient based optimizing algorithms tailored for deep learning implementations

have been put forward, [41] provides an overview on such techniques. A popular

optimization algorithm employed in deep learning is the Adam Optimizer [42].
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Algorithm 2.3.1 The general gradient descent algorithm.

Input: Given initial parameters θ0 and number of iterations T

Output: final parameters θ
(T )
∗

1. for t = 0 to T − 1
2. estimate ∂`

∂θn+1

3. compute θ
(t)
n+1 = θn −∇θn`(θn)

4. select learning rate η

5. θ
(t+1)
n+1 := θ

(t)
n + η∆θ

(t)
n

6. return θ
(T )
∗
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2.3.3 Intialization

In deep learning the difference as to whether an optimization algorithm converges to a

global minimum (a point of lowest absolute error) or diverges is very much dependent

on the parameters initialization. Some techniques used for initializing parameters are

described in [43]. Random initialization from a uniform distribution U [−σ, σ] where

σ is a chosen hyper parameter is widely used and it is the preferred initialization

technique employed in this thesis work.

2.3.4 Backpropagation

Backpropagation briefly introduced in Section 2.1 is the quintessential means of com-

puting the gradients of a deep learning model. Backpropagation algorithm incorpo-

rates an optimizing algorithm to form the learning procedure of a model. We give an

intuition into backpropagation below folllowing [35, 40].

Take for example a layer l of a model that computes an approximate function yli =

f(θlix
l
i) given a single parameter θi whose derivative is desired, and input xl

i whose

derivative is not required. Parameterizing ` loss function with respect to θli gives

`(θli). We can compute the gradient of `(θli) applying chain rule:

∂`

∂θli
=

∂`

∂yli

∂yli
∂θli

. (2.10)

We define errors δ to be

δl ≡
∂`

∂yli
, (2.11)

Equation (2.10) can be applied recursively to evaluate the δ for hidden layers as

follows:
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δl ≡
∂`

∂yli
=

∑
l+1

∂`

∂yl+1
i

∂yl+1
i

∂yli
, (2.12)

the computation runs for all layers l + 1. Given derivative f ′ of the non-linearity

f backpropagation formula is formulated as

δl = f ′(yli)
∑
l+1

θliδl+1. (2.13)

The error backpropagation algorithm depicted in [40] is reproduced here in Algo-

rithm 2.3.1.

Algorithm 2.3.1 Error backpropagation algorithm for a layered neural network rep-
resented as computation graph G = (V,E).

(1) For a sample (xn,y
∗
n), propagate the input xn through the network to compute the

outputs (vi1 , . . . ,vi|V |) (in topological order).

(2) Compute the loss Ln := L(vi|V | ,y
∗
n) and its gradient

∂Ln
∂vi|V |

. (2.14)

(3) For each j = |V |, . . . , 1 compute

∂Ln
∂wj

=
∂Ln
∂vi|V |

|V |∏
k=j+1

∂vik
∂vik−1

∂vij
∂wj

. (2.15)

where wj refers to the weights in node ij .
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Chapter 3

Related Works

This chapter gives an overview of deep learning and popular modern architectures

used in solving problems that cut across various domains. Subsequently, deep learning

based works for semantic segmentation is discussed since it forms the basis of LULC

map production explored in this thesis. Furthermore, works directly related to the

problem considered in this thesis are presented.

3.1 Deep Learning

The term deep neural networks (DNN) characterizes a neural network with many more

layers and many more parameters than a traditional neural network. DNNs exhibit

a massively parallel structure which lend themselves naturally to efficient parallel

implementations [44]. The recent success of DNNs is fuelled in part by graphics

processing units (GPU) ability to implement parallel computations with speed and

efficiency. The work presented here is inspired by the successful application of DNNs

in various fields: robotics [6], speech recognition [7], image processing [8], natural

language processing [9]. The remote sensing community can also benefit from DNNs

to solve complex problems because of its ability to learn low-level and high-level

features in a hierarchical manner. Zhang et al [10] summarizes DNN applications in

remote sensing and geoanalytics in four core areas: 1) image preprocessing, 2) pixel-

based classification, 3) target recognition, and 4) scene understanding. DNNs in this

work are applied to the problem of pixel-based classification.
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3.1.1 Modern Architectures

In 2012, a deep learning model named AlexNet [12] was created and used for image

processing tasks, this model won the 2012 ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) [13] and largely popularized deep convolutional neural networks

(DCNNs). AlexNet builds on the insight of LeNet [11] which is widely recognized as

the first convolutional neural network (CNN). DCNNs are a variant of DNNs modelled

after the visual cortex of a cat [45]. DCNNs make an explicit assumption the network

input is an image. This assumption is reflected in the network architecture of DCNNs.

For instance, the neurons present in a convolution layer of a DCNN are arranged in

three dimensions: width, height, depth; where each neuron is connected to a local

region in the input volume and all neurons share the same weights. This arrangement

is far more efficient in terms of memory and computation concerns in contrast to

traditional NNs where each neuron is connected to each neuron in the previous layer

and has its own set of weights [36].

A DCNN consists of a sequence of layers, very similar to DNNs, that uses convo-

lution in place of general matrix multiplication in at least one of their layers [3].

For example, AlexNet consists of five convolutional and max-pooling layers, and

three fully-connected layers with a final 1000-way softmax layer that completes the

model [36]. The success of AlexNet inspired the creation of many other DCNNs in an

attempt to win subsequent ImageNet challenges and improve accuracy. Often these

networks achieved better results by building deeper networks. As a result, ensuing

architectures all have many more layers.

Simonyan and Zisserman [24] proposed a uniform DCNN architecture called VG-

GNet containing 16-19 weight layers as compared to AlexNet with 8 layers. Its layers

are arranged in a top to bottom topology that consists of stacked (3× 3) convolution

layers and (2 × 2) pooling layers followed by three fully-connected layers. Accord-

ingly, this simple and uniform design proves to be effective as a feature extractor as

evidenced in our results (see e.g., Chapter 6). Similarly, [25] proposed a novel archi-

tecture called GoogLeNet that goes even deeper. This network introduces a network

topology design for its layers described as an inception module. Inception modules

add a different complexity to the network design that generally strays from the tradi-

tion of stacking layers in a uniform structure. The design of the inception module is

described in Chapter 4. GoogLeNet uses 9 inception modules stacked on each other

in addition to occasional max-pooling layers with a stride of 2. One of the goals of
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this architecture was to reduce the amount of computation, which is evidenced by

the fact that it has less parameters than AlexNet and VGGNet. GoogLeNet won the

2014 ILSVRC for classification in which VGGNet was runner-up. One downside of

GoogLeNet is that the large amount of layers causes the network to fit too well to the

training data, thereby loosing its ability to generalize to new samples not contained in

the training set. This problem is referred to as overfiting. In particular, GoogLeNet

network did not scale well to our task (see e.g., Section 6).

Intuitively, one may assume that increasing the depth of DCNN should improve

performance. However, in practice this is not the case. During back-propagation for

these large networks, the computed gradients of the loss function (which are used

to update layer weights) begin to vanish in the early layers of the network, which

results in poor performance. This problem was observed in [26] and subsequently the

authors proposed a residual learning framework that takes into consideration identity

mappings from previous layers. Typically, other DCNNs do not take into account

residual input from previous layers but simply learn a direct mapping of input x

to output y with function H(x). The authors propose Residual Network (ResNet)

conditioned to learn the residual function F (x) = H(x) − x. The residual function

is recast into H(x) = F (x) + x and ResNet tries to learn this instead of a direct

mapping H(x) = x. To this end, the authors hypothesize that it is easier to optimize

the residual mapping than to optimize the direct unreferenced mapping. ResNet

won the 2015 ILSVRC on classification. VGGNet, GoogLeNet and ResNet forms an

integral part in this thesis.

3.2 Deep Learning for Semantic Segmentation

Pixel-wise classification tasks, such as semantic segmentation, aim to understand im-

ages at the pixel level. Semantic segmentation of digital mages involves assigning

classes (e.g. road, grass, cat, dog) to individual pixels in an image. The goal is

to cluster image pixels that belong to the same perceptual objects within the im-

age thereby giving contextual meaning to the pixels. Segmentation algorithms that

generally do not use DNNs are referred to as traditional approaches. Thoma [46]

gives an overview of traditional unsupervised methods for segmentation, including

k-means, decision forests and support vector machine algorithms. Modern DCNN

architectures such as AlexNet [12], VGGNet [24] and GoogLeNet [25] have attained

remarkable success in image classification tasks, and based on this achievements Long
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et al [23] adapts modern DCNN architectures (AlexNet, VGGNet, GoogLeNet) into

fully convolutional networks (FCN) for use in semantic segmentation.

Typically, classifier networks (such as AlexNet, VGGNet, GoogLeNet) take fixed-

sized inputs and produce non-spatial outputs. This means the fully connected layers

present in this networks have fixed dimensions that do not relate to the original spatial

coordinates of the input image. For the purpose of semantic segmentation, Long et al

[23] cast the fully connected layers into fully convolutional layers, i.e. the network

can take input of any size and produce spatial output maps. However, the output

maps produced are coarse due to the sub-sampling layers present in the network.

In order to solve this problem, the authors define skip connections that combines

deep feature-rich coarse maps with appearance information from shallow layers of

the network. The result is a network able to produce more accurate and detailed

semantic samples. Three skip architectures (FCN-32s, FCN-16s, FCN-8s) combine

information from different shallow layers of the network producing finer output maps

that contain high-level information. These output maps are then up-sampled by

transpose convolutions to the original resolution of the input image [37]. Long et

al. [23] train the FCNs through the use of transfer learning [47], which is the process

of using a network trained on a larger dataset (in this case on ImageNet), and then

fine tuning it with a smaller dataset.

Yu and Koltun [27] adapts the VGG-based network proposed in [23] by removing

pooling and striding layers and making heavy use of dilated convolutions in sub-

sequent layers. Furthermore, a context module that uses dilated convolutions to

systematically aggregate multiscale-contextual information while retaining resolution

was introduced. In addition results are reported in [22] based on the architectures

described in [27].

CRFasRNN, described in [48], tackles dense pixel prediction using Conditional

Random Fields (CRFs). When used in the context of pixel-wise label prediction,

CRFs models pixel labels as random variables that form a Markov Random Field

(MRF) when conditioned upon an image. More specifically, they formulate each step

in an iteration of the mean-field algorithm [49] as stack of CNN layers in a dense CRF.

The result is that the iterative mean-field inference is considered as a Recurrent Neural

Networks(RNN). Furthermore, this formulation is combined with FCN-8s of [23] and

trained end-to-end. Results are also reported in [22] based on CRFasRNN [48].

DeepLab v2 [50] explores the use of convolution with up-sampled filters called

atrous convolution to enlarge the field of view without increasing the number of param-
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eters, which is the same behaviour as the dilated convolutions in [27]. Furthermore,

atrous spatial pooling (ASPP) is introduced for multi-scale processing, and CRFs

are used as a post-processing step to improve localization performance. DeepLab

v3 [51] further improves on the later. Another popular architecture for segmentation

is Unet [52] which builds on FCNs [23] for bio-medical segmentation.

3.3 Deep Learning for LULC Map Production

As in many domains, the success of DNNs has prompted researchers to use them

for problems in the field of remote sensing. A particular task of interest in the

remote sensing community is LULC map production. The authors of [17] proposed

an approach of using FCNs for classification of high resolution remote sensing imagery

into a number land use/cover classes. The FCN model proposed in this approach uses

dilated convolutions and is modified for multi-scale classification. Furthermore, this

approach incorporates CRFs in a post-processing step which takes into account more

spatial cues with the end goal of improving accuracy. The work of [18] decouples

the task of land use and land cover production individually and tackles each task

separately. For land cover classification of multi-spectral remote sensing imagery,

the authors adopts SegNet model [53] and compares different variants, in contrast

LiteNet model [54] and other variants is used for land use classification. Remote

sensing imagery can be categorized based on spatial and spectral resolution, [19]

classified hyperspectral remote sensing imagery to produce LULC maps. Typically,

this type of satellite images contains 10s to 1000s of bands, the authors, in this case,

proposed a deep learning framework that includes a Deep Belief Network(DBN) which

learns deep representations and CRFs that considers spatial information trained end-

to-end similar to the approach of [48] for LULC classification. Similarly, Alam et al

[55] incorporate CRF with CNN into a common framework for hyperspectral image

segmentation.

The pixel-wise classification method of satellite imagery presented in this paper

produces LULC maps. In contrast there exist methods that assign global labels to

satellite imagery for LULC classification. The difference between both processes lies

in the output, LULC maps production retains spatial resolution while generic LULC

classification does not, usually the latter is a step before LULC map production. In

this light, it is worth mentioning such related works different from a map production

approach that also use deep learning.
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Castelluccio et al [14] explored the use of DCNNs for classification of remote

sensing scenes using two contemporary architectures CaffeNet and GoogleNet, Two

datasets UC-Merced and Brazilian Coffee Scenes were considered, each dataset with

unique features. UC-Merced spatial and spectral characteristics (high resolution, low

level features, and RGB color space) were closely matched to general optical images

while Brazilian Coffee Scenes includes a special band- Near Infrared band (NIR)

typically found in remote-sensing data. CaffeNet and GoogleNet were implemented

to classify both datasets independent of each other UC-Merced (21 classes), Brazilian

Coffee Scenes (4 classes). Results from both models outperformed other state of the

art classical techniques paired with the same data and classification problem.

Basu et al [15] proposed a novel classification framework for classifying satellite

images called DeepSat. There were 150 features extracted from two datasets (SAT-

4 and SAT-6) containing four bands - Red, Green, Blue and NIR. Some features

extracted include energy, entropy, homogeneity, contrast, maximum probability, sat-

uration, intensity, and image channels. All features were normalized to lie in the

range [0, 1] before being fed to a Deep Belief Network(DBN) classifier trained using

Contrastive Divergence algorithm [56]. This network outperforms the classical DBN

on the target dataset.

Marmanis et al [16] explore a system of extracting representations from DCNNs

pretrained on ImageNet dataset for classification of remote sensing images. The

system follows a two stage classification scheme. In the first stage, original training

data is fed into a pretrained DCNN model. Information obtained from a set of deep

activations in the last layers of the pretrained DCNN is then fused to a single vector

reshaped into a 2-D array. In the second stage, this information is received by a CNN

supervised classifier with labels to classify images. This system has three positive

implications; richer information obtained in the deeper layers of pretrained networks

contributes to higher classification accuracy, information fusion from different layers

influences accuracy since multiple scales of relevant information exists at these layers,

by reshaping the single vector into 2-D array a reduction of parameters occurs and

features are better processed by the CNN classifier.
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Chapter 4

Base Networks for LULC Map

Production

This chapter introduces three popular DNN architectures which we refer to as base

networks. Specifically, VGGNet [24], GoogLeNet [25] and ResNet [26] classification

networks play an important role in the solution proposed here as they are used as the

base networks for the semantic segmentation approach defined in thesis. Furthermore,

modifications and extensions to the networks based on the problem considered in this

thesis are discussed.

4.1 Modifications to Base Networks

The base networks (VGGNet, GoogLeNet, ResNet) were originally designed for the

purpose of image classification, object detection and are identified as classifications

networks that produce non-spatial outputs. They can be re-purposed for seman-

tic segmentation task by re-interpreting fully connected layers as fully convolutional

layers [23]. Here, these base networks are adapted into FCNs (labelled as FCN-

[VGG, ResNet, GoogLeNet]) that take arbitrary sized input and produces semantic

maps [23]. This adaptation is rather trivial and the output maps produced are coarse

with spatially reduced dimension size. To produce good representative semantic maps,

the coarse output is passed through a stack of transpose convolution layers which in-

creases dimension size and connects coarse output to dense pixels [23]. In this design,

the first part of the network (i.e. the base network) is referred to as an encoder

that acts a feature extractor encoding input information into a compressed vector,
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and the second part is considered a decoder that performs upsampling of the com-

pressed vector to match input spatial dimension. This network structure is depicted

in Fig. 4.1.

Covolution + Pooling

Encoder

Upsampling: Transpose Convolution

Decoder

Figure 4.1: FCNs: Encoder-Decoder Architecture

The original base networks are structured to take arbitrary sized input (H×W×3)

suited for general-purpose optical images that have three channels (depth) red, green

and blue (RGB). The Landsat 5/7 satellite images used in this work are intrinsically

different in that they contain six channels: red, green, blue, and three infrared. Due

to this fact, the input layer of the original base networks were modified to take input

as (H ×W × 6). Originally, the base networks were trained on the ImageNet dataset

containing ∼1.2 million RGB-based images. We take weights of the base networks

that were pre-trained on the ILSVRC and double the number of parameters on the

first layer and initialize these new weights randomly from a uniform distribution. In

other words, only weights for each depth slice in this layer doubles. For instance,

consider a network where the first convolution layer has dimensions (3× 3× 3× 64).

By doubling weights of the depth slice, the layer dimensions become (3× 3× 6× 64).

Note, only the depth slice weights were modified to accommodate three additional

channels.

All other parameters remain the same, for instance assuming the first layer (i.e the

input image) is of dimension size 224×224×3 doubled to 224×224×6, the number of

neurons does not increase because the subsequent layer dimensions remain 224×224×
64 only the number of weights for this layer doubles since 3× 3× 6× 64

∑
64 = 3520

(see e.g. Fig 4.2) . In addition, all fully-connected layers were removed from the

original base networks, which follows the approach described in [23]. In other words,

these classifiers were adapted for dense prediction and up-sampling using transpose

convolutions.
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Figure 4.2: Example of network modifications performed in this work. (a) First six
layers of the FCN-8 using RGB image input (i.e. 3 bands), and (b) first six layers of
the FCN-8 with Landsat 5/7 (i.e. 6 bands).

4.2 FCN-VGG

The VGG network architecture was named after the Visual Geometry Group at the

University of Oxford. It is a popular network that secured second position in the

ILSVRC14 classification task [24]. In this work, the VGG-16 layer net is re-purposed

for semantic segmentation (in the same manner as Long et al [23]). VGGnet consists

of convolution layers, max-pooling layers, and fully convolutional layers. In regards

to VGG-16, the encoder part of the network has 16 layers while the decoder part has

3 layers. The convolution layers are stacked top to bottom to receive corresponding

input from each layer, and the convolution kernel size is fixed with varying depth

(3 × 3 × X). Max-pooling layers are positioned in between convolution layers to

down-sample input coming from the previous layer. The max pooling kernel size

is fixed at (2 × 2 × X), where the depth size is the same as the previous layer.

Fully convolutional layers appear at the end that produce feature maps, called sore

maps, containing contextual meaning. Additionally, score maps are passed through

a stack of up-sampling layers which increase dimensionality of the output to match
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original input. This final process is called transpose convolution with strides [37].

To summarize, the same FCN-8 architecture described by [23] is used in this work

with only a modification of the first layer as described above. The network is fully

illustrated in Table 4.1, which shows operations across all layers of the FCN-VGG-16

network.

Table 4.1: Input/output characteristics of the FCN-VGG-16 network architecture
used in this work.

layer name kernel size / stride output size

input(224 x 224 x 6 satellite image)

conv1.x {3 x 3, 64 / 2} x 2 (224 x 224 x 64)

pool1 {2 x 2 / 2} (112 x 112 x 64)

conv2.x {3 x 3, 128 / 1} x 2 (112 x 112 x 128)

pool2 {2 x 2 / 2} (56 x 56 x 128)

conv3.x {3 x 3, 256 / 1} x 3 (56 x 56 x 256)

pool3 {2 x 2 / 2} (28 x 28 x 256)

conv4.x {3 x 3, 512 / 1} x 3 (28 x 28 x 512)

pool4 {2 x 2 / 2} (14 x 14 x 512)

conv5.x {3 x 3, 512 / 1} x 3 (14 x 14 x 512)

pool5 {2 x 2 / 2} (7 x 7 x 512)

conv fc.x {1 x 1, 4096 / 1} x 2 (7 x 7 x 4096)

conv final {1 x 1, 19 / 1} (7 x 7 x 19)

upsampling layers (transpose convolutions with stride)

tconv fuse pool4 {4 x 4, 512 / 2} (14 x 14 x 512)

tconv fuse pool3 {4 x 4, 256 / 2} (28 x 28 x 256)

tconv final {16 x 16, 19 / 8} (224 x 224 x 19)

4.3 FCN-ResNet

The ResNet architecture introduced residual connections between layers of deep con-

volutional networks allowing network depths to be increased. This network won 1st

place in the ILSVRC14 classification task [26]. In this work, a 101 layer deep net-
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work variant of ResNet (ResNet-101) is adapted for dense pixel classification. The

convolutional layers in this network are defined in a bottleneck architecture that has

a kernel size of (1×1×X), (3×3×X), (1×1×X) stacked together. For each residual

connection a stack of convolutional layers is defined, where the (1 × 1 × X) kernels

are responsible for dimensionality reduction and restoration. With this bottleneck de-

sign, max pooling layers are eliminated in between convolutional layers. Furthermore,

in this work, the last average pooling layer and fully connected layer are removed.

The output score maps are passed through a stack of up-sampling layers with skip

connections from previous layers (again following the approach of [23]). Otherwise,

the ResNet-101 base architecture (without fully connected layer and softmax clas-

sifier) described in [26] is retained, and only the first layer modified. The network

architecture is fully defined in Table 4.2

Table 4.2: Input/output characteristics of the FCN-ResNet-101 network architecture
used in this work.

layer name kernel size / stride output size

input(224 x 224 x 6 satellite image)

conv1 {7 x 7, 64 / 2} x 2 (112 x 112 x 64)

maxpool {3 x 3 / 2} (56 x 56 x 64)

conv2.x {1 x 1, 64 — 3 x 3, 64 — 1 x 1, 256} x 3 (56 x 56 x 256)

conv3.x {1 x 1, 128 — 3 x 3, 128 — 1 x 1, 512} x 4 (28 x 28 x 512)

conv4.x {1 x 1, 256 — 3 x 3, 256 — 1 x 1, 1024} x 23 (14 x 14 x 1024)

conv5.x {1 x 1, 512 — 3 x 3, 512 — 1 x 1, 2048} x 3 (7 x 7 x 2048)

conv fc {1 x 1, 19} (7 x 7 x 19)

upsampling layers (transpose convolutions with stride)

tconv fuse conv4.x {4 x 4, 1024 / 2} (14 x 14 x 1024)

tconv fuse conv3.x {4 x 4, 512 / 2} (28 x 28 x 512)

tconv final {16 x 16, 19 / 8} (224 x 224 x 19)

4.4 FCN-GoogLeNet

GoogLeNet, also called Inception, arranges the operational layers in a network topol-

ogy in which multiple convolution layers (with pooling) are structured into modules.



30

This novel network structure, proposed by [25], won 1st place in the ILSVRC15 clas-

sification task. Although new improvements [57, 58] have been made on the original

Inception network [25], the very first version with 22 layers was used in this work for

dense pixel classification in order to simplify implementation. Each module contains

multiple convolution layers with kernel sizes (1×1×X), (3×3×X), (5×5×X) and

(3 × 3 ×X) and max pooling layer connected in parallel. This network is shown in

Fig. 4.3. The (1×1×X) convolution kernels performs dimension reduction along the

depth vector of the input, reducing the number of parameters, to make the network

computationally efficient.

5 x 5 

conv5

1 x 1

conv3_reduce

1 x 1 

conv_pool

3 x 3 

conv3

1 x 1 

conv5_reduce

3 x 3 

max_pool 

1 x 1 

conv1

previous layer

concatenation

Figure 4.3: Architecture Design of Inception Module

Multiple operational layers in the module learn discriminative patterns of the

feature maps, and, at the end, all resulting features maps from the parallel connections

are concatenated. Just as with the previous networks, the original architecture was

used for this work. Again, the first layer of the network was modified for 6-channel

input, and the last layers of the network, including the average pooling layer, linear

layer and softmax classifier were removed before passing the output from the last

inception module into a stack of up-samling layers with skip connections following

the approach of [23]. Table 4.4 shows details of the network structure.

4.5 Extensions to Base Networks

Extensions were made to the base networks to further improve accuracy. Specifically,

two methods are presented with the sole aim of improving performance. Each method

is tested individually for each base network, subsequently an ensemble of both meth-
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ods is tested for each base networks. The results achieved from the extensions is a

major improvement to our previous results reported in [22] and adds to the perfor-

mance of base networks presented (see e.g., Section 6). In this light, we present both

extensions in the following subsections.

4.5.1 Context Module Extension

The first extension was to add a vestige plugin called a context module [27]. This

module uses dilated convolutions to systematically aggregate multi-scale contextual

information without losing resolution. This module is appended to the end of the

base networks and takes up-sampled feature maps as input and passes them through

a series of dilated convolution layers. This module proved to be effective in improving

accuracy (as reported in Section 6). The architecture of this module is summarized

in Table 4.3.

Table 4.3: Input/output characteristics of the context module used in this work

layer name kernel size / dilation output size

input(224 x 224 x 19 feature maps)

ctx 1 {3 x 3, 38 / 1} (224 x 224 x 38)

ctx 2 {3 x 3, 38 / 1} (224 x 224 x 38)

ctx 3 {3 x 3, 76 / 2} (224 x 224 x 76)

ctx 4 {3 x 3, 152 / 4} (224 x 224 x 152)

ctx 5 {3 x 3, 304 / 8} (224 x 224 x 304)

ctx 6 {3 x 3, 608 / 16} (224 x 224 x 608)

ctx 7 {3 x 3, 608 / 1} (224 x 224 x 608)

ctx 8 {3 x 3, 19 / 1} (224 x 224 x 19)

4.5.2 Adversarial Extension

The semantic segmentation networks were further extended by adding an adversarial

network. Specifically, each of the FCN-[VGG, ResNet, GoogLeNet] networks were

trained alongside a discriminator network that discriminates between ground-truth

and predicted output (classes). This process mimics a GAN [28] architecture. To

state this another way, our FCN (i.e. either FCN-[VGG, ResNet, GoogLeNet])
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is redefined as a generator and is combined with a convolutional neural network-

based discriminator to form a GAN. The architecture of the discriminator is adapted

from [59], wherein configuration for the layers follow the pattern: Convolution-Batch

Normalization-Leaky Rectified Linear Unit (ReLU). In addition, the discriminator

uses receptive fields of size 256 x 256 pixels, which proved effective on input with

224× 224 pixels. The discriminator network function is to discriminate between the

ground-truth maps as real and predicted maps as fake while the generator network

function is to the fool the discriminator by producing maps as close to ground-truth

as possible. Each network is trained independently of each other with the main goal

of propagating signals that encourages the generator network to produce better and

more accurate results. This process is depicted in Fig. 4.4

Figure 4.4: Adversarial Extension

As a result of the structural changes made to our networks, the loss functions for

the generator and discriminator are based on the approach by Luc et al [60]. The

generator loss function combines multi-class entropy loss, a standard loss function

used in our base networks, with a binary class entropy loss. Formally, for ground-

truth (denoted by y) and predicted output (denoted by ŷ) C denotes the number

of classes (see e.g., Fig. 5.2), yic is the correct probability i for class c and ŷic is the

predicted probability i for class c the multi-class entropy loss is measured as:

`mce(y, ŷ) = −
C∑
c=1

yic ln(ŷic). (4.1)
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Similarly, z denotes the binary probability for predicted output (0) and ground-truth

(1) and ẑ represents predicted probability between (0 and 1) the binary class entropy

loss is defined as

`bce(z, ẑ) = −(z ln(ẑ) + (1− z) ln(1− ẑ)). (4.2)

Given a dataset N containing xn number of training images and corresponding

ground-truth maps yn the generator model g(·) is a trainable function which can

be interpreted as a conditional probability model g(xn) = P (yn | xn). The gener-

ator g(·) is trained to produce target maps by minimizing multi-class entropy loss.

In contrast, the discriminator model assuming binary classification with a trainable

function d(·) can be interpreted as a joint probability model d(xn,yn) = P (0, 1). The

discriminator model predicts that yn is the ground-truth label map of xn by assigning

labels as (real = 1) to ground-truth and discriminates label maps g(xn) produced by

the generator by assigning labels as (fake = 0). Training the discriminator translates

to minimizing the following loss function:

N∑
n=1

`bce(d(xn,yn), 1) + `bce(d(xn, g(xn)), 0).

The generator in an adversarial role does not only minimize the multi-class entropy

loss, but also aims to degrade performance of the discriminator by producing very

similar outputs to corresponding ground-truth. Training the generator translates to

minimizing the following loss function:

N∑
n=1

`mce(g(xn),yn) + λ`bce(d(xn, g(xn)), 1),

note, λ is applied as a constant regularization function.

Lastly, the parameters (θg,θd) of the generator and discriminator respectively are
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adjusted by minimizing a hybrid loss function defined as

`(θg,θd) =
N∑

n=1

`mce(g(xn),yn)− λ(`bce(d(xn,yn), 1) + `bce(d(xn, g(xn)), 0)).
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Table 4.4: FCN-GoogLeNet network architecture used in this work.
layer name kernel size / stride output size

input(224 x 224 x 6 satellite image)

conv1 {7 x 7, 64 / 2} x 2 (112 x 112 x 64)

maxpool {3 x 3 / 2} (56 x 56 x 64)

conv2.x {3 x 3, 192 / 1} (56 x 56 x 192)

maxpool {3 x 3 / 2} (28 x 28 x 192)

inception(3a)

{conv1, 64 / 1}
{conv3 reduce, 96 / 1}
{conv3, 128 / 1}
{conv5 reduce, 16 / 1}
{conv5, 32 / 1}
{conv pool, 32 / 1}

( 28 x 28 x 256)

inception(3b)

{conv1, 128 / 1}
{conv3 reduce, 128 / 1}
{conv3, 192 / 1}
{conv5 reduce, 32 / 1}
{conv5, 96 / 1}
{conv pool, 64 / 1}

(28 x 28 x 480

maxpool {3 x 3 / 2} (14x 14 x 480)

inception(4a)

{conv1, 192 / 1}
{conv3 reduce, 96 / 1}
{conv3, 208 / 1}
{conv5 reduce, 16 / 1}
{conv5, 48 / 1}
{conv pool, 64 / 1}

(14 x 14 x 512)

inception(4b)

{conv1, 160 / 1}
{conv3 reduce, 112 / 1}
{conv3, 224 / 1}
{conv5 reduce, 24 / 1}
{conv5, 64 / 1}
{conv pool, 64 / 1}

(14 x 14 x 512)

inception(4c)

{conv1, 128 / 1}
{conv3 reduce, 128/ 1}
{conv3, 256 / 1}
{conv5 reduce, 24 / 1}
{conv5, 64 / 1}
{conv pool, 64 / 1}

(14 x 14 x 512)

inception(4d)

{conv1, 112 / 1}
{conv3 reduce, 144/ 1}
{conv3, 288 / 1}
{conv5 reduce, 32 / 1}
{conv5, 64 / 1}
{conv pool, 64 / 1}

(14 x 14 x 528)

inception(4e)

{conv1, 256 / 1}
{conv3 reduce, 160 / 1}
{conv3, 320 / 1}
{conv5 reduce, 32 / 1}
{conv5, 128 / 1}
{conv pool, 128 / 1}

(14 x 14 x 832)

maxpool {3 x 3 / 2} (7 x 7 x 832)

inception(5a)

{conv1, 256 / 1}
{conv3 reduc, 160 / 1}
{conv3, 320 / 1}
{conv5 reduc, 32 / 1}
{conv5, 128 / 1}
{conv pool, 128 / 1}

(7 x 7 x 832)

inception(5b)

{conv1, 384 / 1}
{conv3 reduc, 192 / 1}
{conv3, 384 / 1}
{conv5 reduc, 48 / 1}
{conv5, 128 / 1}
{conv pool, 128 / 1}

(7 x 7 x 1024)

conv final {1 x 1 x 19 / 1} (7 x 7 x 19)

upsampling layers (transpose convolutions with stride)

tconv fuse inception(4e) {4 x 4, 832 / 2} (14 x 14 x 832)

tconv fuse inception(3b) {4 x 4, 480 / 2} (28 x 28 x 480)

tconv final {16 x 16, 19 / 8} (224 x 224 x 19)
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Chapter 5

Implementation Details

5.1 Dataset Acquisition

Landsat 5/7 satellite images of the southern agricultural growing region of Manitoba

(see the red outline in Fig. 5.1) are used to evaluate and compare the accuracy of the

networks described here. This area is referred to as southern extent of Manitoba, and

the size of this region is approximately 148,800 km2. These images differs from typical

digital RGB images and as such necessitated the base network modifications described

in Chapter 4, this satellite imagery contains three additional infrared channels known

as spectral bands. The additional bands captures the spectral response of the various

objects (e.g. water, grass, conifer and deciduous trees) that make up the earths land

surface. The magnitude of energy that the objects reflects or emits across a range

of wavelengths is called its spectral response pattern and its recorded in the spectral

bands 1. The satellite imagery (multispectral) used in this work contains 6 bands.

The characteristics of the bands are contained in Table 5.1. Each pixel in the satellite

image represents 30 m x 30 m square area of land.

The dataset acquired contains raw Landsat 5/7 satellite images (i.e. unclassified

data) and LULC (i.e. labelled, ground-truth data). The labelled data was created

using semi-automated methods (see [61]) and ground-truthed by GeoManitoba2. A

total of eighteen Landsat 5/7 scenes (see the green outlines in Fig. 5.1) were used

to produce the maps. LULC maps are produced from satellite images by classifying

each pixel in the satellite image to one of several land-use labels (see e.g., Fig. 5.3).

Example labels include water, grassland, marsh, deciduous, coniferous, road, and

1https://www.e-education.psu.edu/natureofgeoinfo/node/1906
2A government agency mandated to create land-use/land-class maps of the province of Manitoba
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Table 5.1: Bands: Spatial and Spectral Resolution of Landsat5/7 Data

Bands Spectral Resolution (µm) Spatial Resolution (meter)

Blue (B) 0.450 to 0.515 30
Green (G) 0.525 to 0.605 30
Red (R) 0.630 to 0.690 30

Near Infrared (NIR) 0.750 to 0.900 30
Shortwave Infrared (SWIR) 1.550 to 1.750 30

Shortwave Infrared 2 (SWIR2) 2.090 to 2.350 30

agriculture. The full list is given in Fig. 5.2, and an example of a GeoManitoba

LULC map created from Landsat 5/7 data from 2004 is given in Fig. 5.4. The

GeoManitoba dataset was augmented with satellite images containing clouds and a

new class (clouds) was added to the list provided by GeoManitoba. This was done to

prevent the networks from misclassifying clouds into one of the other land-use classes.

Figure 5.1: Province of Manitoba with the southern agricultural growing region (red)
and the associated Landsat 5/7 scenes that cover this area (green).

Agriculture

Deciduous

Water
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Marsh

Treed and Open Bogs

Treed Rock

Conifer

Open Deciduous

Forage Crops

Cultural

Cutovers

Gravel

RoadBurns

Fens

Clouds

Figure 5.2: GeoManitoba land-use classes

5.2 Data Preparation and Augmentation

A key component to successfully training deep neural networks is the availability of

sufficient training data. For example, all base networks presented in this work were

originally trained on the ImageNet dataset [13], consisting of ∼1,2 million images
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(a) (b)

Figure 5.3: Example LULC map. (a) RGB components of a Landsat 7 satellite image
of Manitoba, and (b) the GeoManitoba LULC map produced from (a).

Figure 5.4: 2004 LULC map provided by GeoManitoba.
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and 1000 categories. The LULC map provided by GeoManitoba had a resolution of

(13777× 16004× 6), which posed some problems. Firstly, the original base networks

were structured to take input of (224 × 224). Secondly, maintaining the original

resolution of our dataset meant only 3 training examples were available to work with.

Subsequently, these problems were solved by dividing both the raw satellite image and

corresponding LULC maps into tiles of size (224 × 224 × 6). This approach proved

to be effective in solving both issues. The process used to produce the individual

tiles from the full southern extent is depicted in Fig. 5.5. The first set of tiles were

produced by the method shown in Fig. 5.5(b), namely the tiles were non-overlapping.

To further increase the size of the dataset, the tiling process in Fig. 5.5(c) was used to

produce more tiles. In this case, tiles were overlapped by half the size of the network

input resolution, i.e. 224/2 = 112. Moreover, by starting this process in each of

the four corners of the full map depicted in Fig. 5.5(a), the total number of tiles

generated in Fig. 5.5(c)was able to be increased by more than 4× due to the fact that

the resolution of the map in Fig. 5.5(a) is not a multiple of 224.

(a) (b) (c)

Figure 5.5: Illustration depicting the tiling process. (a) GeoManitoba’s LULC map
of southern Manitoba, (b) non-overlapping tiles, and (c) 1/2 tile overlap.

5.3 Experimental Setup

All networks were trained and evaluated using the Tensorflow deep learning frame-

work [62] on a NVIDIA Digits DevBox 3 containing four Titan X GPUs with 12GB

of memory per GPU, 64 GB DDR4 RAM, and a Core i7-5930K 3.5 GHz processor.

Training time for each network took an average period of 6-10 days. A mini-batchsize

of 2 was maintained across all networks due to GPU memory constraints. Subse-

3https://developer.nvidia.com/devbox

https://developer.nvidia.com/devbox
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quently, learning rates of 10−4, 10−5, 10−9 were used for experimentation, and the

best results were achieved by starting with a learning rate of 10−4, maintaining it

for 100 epochs, and then reducing the learning rate to 10−5 for another 100 epoch,

thereby completing training after 200 epochs. The Adam optimization algorithm[42]

was used to update network weights since it allowed the networks to converge quickly

when compared to RMSprop and (SGD + Momentum) optimizer [41].
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Chapter 6

Results, Analysis and Comparisons

In this chapter, we complete analysis and evaluations of our base networks and exten-

sions identified in Chapter 4. Accuracy assessment is performed on our best network

identified from quantitative evaluations. In addition, sample results from each net-

work are compared. At the end we discuss our results and make a case for our deep

learning framework introduced over the course of this work based on quantitative and

qualitative evaluations.

6.1 Evaluation Metrics

The dataset consists of 18,054 training images and 958 validation images following

a 80/20 split. The networks evaluated are as follows: Base networks (consisting of

FCN-[VGG-16, ResNet-101, GoogLeNet]), base networks + context module, base

networks + adversarial network, and base networks + context module + adversarial

network. All networks are described in Chapter 4. The following common segmen-

tation metrics were aggregated over validation images (predicted and corresponding

ground-truth). Let nij be the number of pixels having ground-truth label i whose

prediction is predicted label j. Also, ti =
∑C

j=1 nij denotes the total number of pixels

labeled with i where C is the number of classes, nii is the number of pixels labeled

correctly and nji is the number of pixels wrongly labeled.

Global pixel accuracy is the ratio of correctly classified pixels to total pixels

summed over all classes and it is defined as∑C
i=1 nii∑C
i=1 ti

.



42

We compute the per-class accuracy metric as

1

C

C∑
i=1

nii

ti
,

which measures the ratio of correctly classified pixels in each class to total pixels,

averaged over all classes. Lastly, the Mean IOU defined as

1

C

C∑
i=1

nii

ti +
∑C

j=1 nji − nii

,

which measures the average intersection over union (IOU) over all classes. Here, IOU

is the ratio of correctly classified pixels to the total number of pixels that are assigned

a class by the ground-truth and predicted.

6.2 Quantitative Evaluations and Comparisons

Beginning with the base networks, Table 6.1 shows the results based on the valida-

tion set. FCN-ResNet-101 performed best with a global accuracy of 88.25% slightly

outperforming FCN-VGG16. FCN-GoogLeNet performed worst with a global accu-

racy of 62.13%, which is attributed to the network overfitting the training set. Both

dropout [39] and batch normalization [63] were attempted to prevent overfitting, how-

ever neither approach was able to improve the results. Next, the base networks were

extended to include an adversarial component (as described in Section 4.5). These re-

sults are reported in Table 6.2. Observe that the improvement due to the adversarial

network was minimal, but that all networks did improve. In this category FCN-

VGG16 performed best with a 0.93% increase over just the base network. Continuing

on, Table 6.3 presents the results on extending the base networks with a context

module. In this case the improvements were more significant, and, again, were all

better than the previous two results. FCN-ResNet-101 performed best on the global

accuracy metric while FCN-VGG16 performed best on both mean accuracy and mean

IOU metrics. Finally, Table 6.4 gives the results from extending the base network

with both the context module and adversarial network. The results obtained in this

category provided the best overall result, with only VGG-16 performing worse than

just using the context module. More specifically, FCN-ResNet-101 performed best

among networks from all the categories.
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Table 6.1: Results from the base networks

Global Accuracy Per-Class Accuracy(Mean) Mean IOU

VGG-16 87.99% 81.50% 72.19%
ResNet-101 88.25% 81.92% 73.53%
GoogLeNet 62.13% 37.13% 29.06%

Table 6.2: Results from the base networks + adversarial network

Global Accuracy Per-Class Accuracy(Mean) Mean IOU

VGG-16 88.92% 83.26% 74.17%
ResNet-101 88.40% 82.56% 74.10%
GoogLeNet 62.19% 37.15% 29.08%

Table 6.3: Results from the base networks + context

Global Accuracy Per-Class Accuracy(Mean) Mean IOU

VGG-16 90.32% 83.93% 75.77%
ResNet-101 90.38% 83.81% 75.37%
GoogLeNet 77.64% 59.64% 49.04%

Table 6.4: Results of comparison between base networks + context + adversarial
network

Global Accuracy Per-Class Accuracy(Mean) Mean IOU

VGG-16 90.34% 83.63% 75.36%
ResNet-101 90.46% 84.14% 75.66%
GoogLeNet 77.71% 59.81% 49.20%
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6.3 Accuracy Assessment and Analysis

The results generated from the best network in form of an error matrix or confusion

matrix presented in Tables 6.5 and 6.7 provides a base for LULC map analysis. The

error matrix takes different forms and shows the percent accuracy and total number of

pixels classified for each LULC class. Note, for Tables 6.5 and 6.7, the rows correspond

to ground truth and the columns to the best network prediction. The No Data class

(see Tables 6.5 to 6.7) is introduced for the network to be able to classify the pixels

around the edge of a Landsat scene correctly when working with real data. Note, this

class is easily classified by the network as observed from the high accuracy since its

label is very distinguishable from other labels. Some other classes easily classified by

the network are Agriculture, Water, Treed Bog, Forage and Fens. The deep learning

framework performs well for both land-use and land-cover classes which makes it very

robust. Burns is identified as the class with the lowest accuracy. Moreover, Burns

accounts for only 2.2 × 10−4% of the total labels in the validation set. Likewise,

the Burns category represent only 1.8× 10−06 of the total pixels in the ground-truth

labels provided by GeoManitoba. Thus, an explanation to its low accuracy is the fact

that Burns is significantly underrepresented in the original dataset making it quite

difficult to classify by the network. Going by the data in Table 6.6 the randomly

sampled validation set used for testing offers a fair representation of the total labels

in the ground-truth for each class. Notice, from the error matrix that misclassification

between similar classes is at a minimum in this network. In addition, our best network

reliably detects features like roads that exist at single pixel level.
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Table 6.5: Percent accuracy for each class from FCN-ResNet-101 + Context + Ad-
versarial Network.
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No Data 99.94 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Agriculture 0.00 96.72 0.49 0.02 1.62 0.01 0.47 0.00 0.00 0.00 0.00 0.02 0.12 0.01 0.00 0.00 0.50 0.00 0.00
Deciduous 0.00 1.30 87.41 0.33 5.76 2.07 1.30 0.06 0.01 0.13 0.00 0.95 0.23 0.02 0.10 0.02 0.30 0.00 0.00
Water 0.00 0.11 0.52 97.06 0.50 0.17 1.36 0.03 0.05 0.07 0.00 0.07 0.01 0.01 0.00 0.01 0.02 0.00 0.00
Grass 0.00 3.96 5.10 0.26 86.72 0.33 1.43 0.01 0.00 0.06 0.00 0.47 0.58 0.08 0.01 0.02 0.95 0.00 0.01
Mixedwood 0.00 0.03 4.93 0.28 0.83 84.33 1.60 0.99 0.93 4.22 0.00 1.11 0.02 0.02 0.38 0.01 0.31 0.00 0.00
Marsh 0.00 3.78 3.27 2.05 4.30 1.88 81.65 1.01 0.09 0.44 0.00 1.13 0.19 0.00 0.03 0.00 0.17 0.01 0.01
Tbog 0.00 0.00 0.44 0.09 0.04 2.30 1.53 90.37 0.81 3.50 0.00 0.78 0.00 0.00 0.09 0.00 0.05 0.00 0.00
Trock 0.00 0.00 0.28 0.61 0.04 8.97 0.62 3.37 74.36 11.17 0.00 0.08 0.00 0.01 0.35 0.00 0.14 0.00 0.00
Conifer 0.00 0.01 0.57 0.23 0.27 9.10 0.70 2.95 2.59 82.13 0.00 0.78 0.00 0.01 0.48 0.01 0.17 0.00 0.00
Burns 0.00 7.55 1.89 0.00 14.15 1.89 4.72 1.89 0.00 0.00 51.89 0.00 0.94 0.00 0.94 0.00 14.15 0.00 0.00
Open Deci. 0.00 0.49 6.94 0.23 3.67 3.13 2.06 0.83 0.03 1.12 0.00 80.96 0.11 0.00 0.14 0.03 0.24 0.00 0.01
Foreage 0.00 2.28 1.20 0.03 4.00 0.03 0.34 0.00 0.00 0.00 0.00 0.09 91.46 0.01 0.01 0.00 0.53 0.00 0.01
Cultural 0.03 2.02 1.39 0.36 3.89 0.38 0.13 0.08 0.01 0.04 0.00 0.04 0.14 88.26 0.02 0.04 3.12 0.00 0.05
Cutovers 0.00 0.01 2.77 0.05 0.40 5.52 0.50 0.73 0.74 2.81 0.00 0.98 0.03 0.00 85.14 0.02 0.29 0.00 0.00
Gravel 0.00 3.54 5.63 3.56 8.80 1.35 0.48 0.18 0.03 0.63 0.00 1.70 0.09 0.52 0.43 71.91 1.11 0.00 0.03
Road 0.01 10.54 3.14 0.11 10.35 1.40 0.65 0.11 0.07 0.36 0.00 0.40 0.98 0.86 0.11 0.03 70.88 0.00 0.01
Fens 0.07 0.00 0.03 0.01 0.04 0.17 3.54 0.79 0.09 0.01 0.00 0.00 0.00 0.00 0.07 0.00 0.09 95.08 0.00
Cloud 0.00 1.87 3.64 0.12 8.00 0.13 1.84 0.02 0.00 0.03 0.00 0.57 0.51 0.13 0.01 0.23 0.58 0.00 82.30

Table 6.6: Total ground-truth (gt) labels in 2004 LULC map and total ground-truth
labels in the validation (val) set for each class.

Labels (gt) % Labels (gt) Labels (val) % Labels (val)

No Data 67328000 30.54 1759952 3.66
Agriculture 46492000 21.09 14637515 30.45
Deciduous 21248000 9.64 6651303 13.84
Water 15454000 7.01 4714705 9.81
Grass 23441000 10.63 6931812 14.42
Mixedwood 9610600 4.36 2842707 5.91
Marsh 9515700 4.32 2904884 6.04
Tbog 5594000 2.54 1451776 3.02
Trock 1554400 0.70 383216 0.80
Conifer 5910500 2.68 1575915 3.28
Burns 390 0.00 106 0.00
Open Deci. 4610900 2.09 1226973 2.55
Foreage 4819400 2.19 1452454 3.02
Cultural 694080 0.31 224161 0.47
Cutovers 1020800 0.46 340413 0.71
Gravel 122860 0.06 29651 0.06
Road 2982000 1.35 913966 1.90
Fens 36163 0.02 6955 0.01
Cloud 51590 0.02 20144 0.04
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Table 6.7: Total number of pixels classified for each class from FCN-ResNet-101 +
Context + Adversarial Network.
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Conifer 19 110 9040 3617 4211 143348 11030 46514 40878
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Cultural 73 4530 3118 796 8716 852 281 177 25
Cutovers 0 23 9436 154 1364 18798 1710 2495 2530
Gravel 0 1049 1669 1057 2608 400 143 54 9
Road 58 96309 28664 960 94551 12828 5980 1016 669
Fens 5 0 2 1 3 12 246 55 6
Cloud 0 377 733 24 1612 27 371 5 0

C
o
n
if
e
r

B
u
r
n
s

O
p
e
n

D
e
c
i.

F
o
r
a
g
e

C
u
lt
u
r
a
l

C
u
to

v
e
r
s

G
r
a
v
e
l

R
o
a
d

F
e
n
s

C
lo
u
d

No Data 107 0 26 7 0 5 0 85 0 0
Agriculture 63 3 3429 18105 1403 8 346 73523 0 179
Deciduous 8544 3 63326 15602 1587 6679 1264 19832 0 252
Water 3177 3 3422 463 677 127 509 746 0 3
Grass 4295 11 32849 40047 5742 551 1332 65957 0 757
Mixedwood 119871 2 31612 497 615 10790 389 8923 0 12
Marsh 12811 1 32710 5602 109 818 93 4818 191 159
Tbog 50773 2 11259 33 14 1358 27 683 41 0
Trock 42819 3 315 9 32 1335 4 520 0 0
Conifer 1294279 2 12350 43 113 7640 89 2631 0 1
Burns 0 55 0 1 0 1 0 15 0 0
Open Deci. 13752 0 993402 1324 21 1746 360 2899 0 103
Foreage 30 0 1319 1328423 173 73 21 7729 0 128
Cultural 93 0 82 315 197838 47 98 6999 0 121
Cutovers 9565 2 3344 92 15 289821 60 1004 0 0
Gravel 188 0 505 27 153 128 21323 328 0 10
Road 3324 3 3623 8982 7837 1047 246 647786 6 77
Fens 1 0 0 0 0 5 0 6 6613 0
Cloud 6 0 114 103 27 2 47 117 0 16579
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6.4 Qualitative Evaluation and Comparisons

Output LULC map samples from each network are presented for visual comparison

with corresponding ground-truth maps. This is to show how the predicted output

differs from its corresponding ground-truths at a human-level perceptual understand-

ing. The best network (i.e. FCN-ResNet101 + Context + Adversarial) produces very

similar LULC maps to the ground-truths and as such validates the accuracy results

obtained from quantitative evaluations in Section 6.2 (see e.g. Fig. 6.4).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.1: Sample validation set results for base networks. (First row) ground-truth
labellings, (Second row) result from FCN-ResNet101, (Third row) result from FCN-
VGG16 and, (Fourth row) result from FCN-GoogLeNet.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.2: Sample validation set results for base networks + adversarial. (First
row) ground-truth labellings, (Second row) result from FCN-VGG16 + adversarial,
(Third row) result from FCN-ResNet101 + adversarial and, (Fourth row) result from
FCN-GoogLeNet + adversarial.



49

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.3: Sample validation set results for base networks + context. (First row)
ground-truth labellings, (Second row) result from FCN-ResNet101 + Context, (Third
row) result from FCN-VGG16 + Context and, (Fourth row) result from FCN-
GoogLeNet + Context.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6.4: Sample validation set results for base networks + context + adversarial.
(First row) ground-truth labellings, (Second row) result from FCN-ResNet101 + Con-
text + Adversarial, (Third row) result from FCN-VGG16 + Context + Adversarial
and, (Fourth row) result from FCN-GoogLeNet + Context + Adversarial.
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6.5 Summary

The robustness of our deep learning framework is demonstrated in the fact the network

is able to successfully classify the 2010 Landsat 7 dataset, which was not used in the

training process since there are no corresponding labels for this year. Figure 6.5

and Fig. 6.6 shows a fully classified 2004 Landsat 7 from which the network was

trained and a fully classified 2010 Landsat 7 dataset with which the network was

not presented training examples. Overall, our proposed deep learning framework

successfully discriminates and classifies very similar classes based on spectral cues

and produces highly accurate maps.

Figure 6.5: Final 2004 Landsat 7 LULC map produced by the best network using
ToA input using both validation and training sets.
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Figure 6.6: Final 2010 Landsat 7 LULC map produced by the best network trained
on 2004 data using ToA input.
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Chapter 7

Conclusions

In this thesis, we have presented a deep learning framework for LULC map pro-

duction. Three deep neural networks denoted as base networks in this paper were

adapted into FCNs and modified to take input Landsat 5/7 satellite images (6 bands)

and produce fully classified LULC maps. Furthermore, the networks were extended

to improve accuracy. Two extensions were made: 1.) A context module was added to

the base networks, and 2.) An adversarial network was added to the base networks.

Both extensions served to further improve accuracy and a combination of both exten-

sions added to the base networks provided us with the best result of 90.46% for global

accuracy. To demonstrate the robustness of the proposed deep learning framework we

have presented thorough evaluations and analysis of results obtained. Furthermore,

using our best network we classified and produced LULC map from previously unseen

2010 Landsat 5/7 raw satellite image of the southern extent of Manitoba. Addition-

ally, this deep learning framework can take only 8 minutes and 42 seconds to produce

a map of the southern extent of Manitoba with a trained model, effectively automat-

ing production. This represents a phenomenal reduction in the 4,800 hours required

by the current semi-automated approach according to information made available to

us from GeoManitoba. This goes to show that our work can be deployed in real world

applications. Furthermore, an important observation is that the solution work pre-

sented here should be seen as a solution to freeing up people from the tedious task of

producing LULC maps, rather than eliminating a job. This solution will allow tech-

nicians to focus on analysis of problems and results rather than performing repetitive

pattern classification, tasks which people find tedious and are prone to error.
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This work presented in this thesis is a continuous research work and may assume a

number of possible future directions. In the immediate future we intend on adapting,

modifying and extending other modern deep learning network architectures [64, 65] to

further improve results. Additionally, future work will consist of performing real-world

ground-truthing on the results to produce a statistical proof of the actual accuracy

of the results. Finally, producing a valid solution for 16-bit Landsat 8 is of utmost

importance because of the improved data quality of its imagery. This means the data

quality (signal to noise ratio) and radiometric quantization (12-bits scaled to 16-bits)

of the (Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS))1 is

higher than previous Landsat 5/7 instruments, providing significant improvement in

the ability to detect small differences in reflected or emitted energy recorded in the

spectral bands. This entails creating a new dataset based on Landsat 8 imagery and

producing LULC maps based on this data.

1https://lta.cr.usgs.gov/L8
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