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Abstract

The article calls attention to the relationship between neighbour-
hoods and tolerance classes in the foundations of tolerance near sets.
A particular form of tolerance relation is given by way of introduction
to descriptively e-near sets. Neighbourhoods and tolerance classes have
practical applications in digital image analysis.
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1 Introduction

The paper distinguishes between neighbourhoods and tolerance classes by way
of introduction to the foundations for tolerance near sets. This work is directly
related to recent work on near sets, in general, and tolerance near sets, in
particular (see, e.g., [1, 2,4, 7, 12]) as well as recent work on distance functions
called merotopies and approach spaces (see, e.g. [10]).

2 Preliminaries

To introduce near set theory it is necessary to establish a basis for describing
elements of sets. All sets in near set theory consist of perceptual objects.

Definition 1. Perceptual Object. A perceptual object is something perceiv-
able that has its origin in the physical world.

A perceptual object is anything in the physical world with characteristics ob-
servable to the senses such that they can be measured and are knowable to the
mind. Examples of perceptual objects include patients, components belonging
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to a manufacturing process, and camera images. Here, the term perception is
considered relative to measurable characteristics called the object’s features.

In keeping with the approach to pattern recognition suggested by M. Pavel
[5], the features of an object are quantified by probe functions.

Definition 2. Probe Function [6]. A probe function is a real-valued function
representing a feature of a perceptual object.

In this work, probe functions are defined in terms of digital images such
as: colour, texture, contour, spatial orientation, and length of line segments
along a bounded region. Specifically, objects in our visual field are viewed
in terms of feature vectors that consist of extracted probe function values.
Selected probe functions are used to measure characteristics of visual objects
and provide a basis for detecting similarities among perceived objects. Put
&(z) = (¢1(2), ..., pn(x)) for a feature vector in R™ that describes an object
x. In sum, probe functions make it possible to determine if two objects are
associated with the same pattern without necessarily specifying which pattern
(as is the case when performing classification).

Next, a perceptual system is a set of perceptual objects, together with a
set of probe functions.

Definition 3. Perceptual System [7]. A perceptual system (O,F) consists
of a nonempty set O of sample perceptual objects and a nonempty set F of
real-valued functions ¢ € F such that ¢ : O — R.

3 Neighbourhoods and Tolerance Classes

Definition 4. Neighbourhood. Let (O,F) be a perceptual system, x € O
and let p : O x O — R denote a distance function, e.g., p(z,y) = |z — y|
(standard distance). For a set B C IF and ¢ € [0, 00|, a closed neighbourhood
of z (denoted by N(x)) is defined by

Ny(x,e) ={y € O: p(x,y) = |z —y| < €},

with centre x and radius €. For simplicity when the radius and distance func-
tion p are understood, we write N(x). An example of a neighbourhood (also
concisely written nbd) in a 2D feature space is given in Fig. 1.1, where the po-
sitions of the objects are given by the numbers 1 to 21, and the nbd is defined
with respect to the object labelled 1. That is, the nbd is the set of all the
objects within the circle. Notice that the distance between all the objects and
object 1 in Fig. 1.1 is less than or equal to € = 0.1, and that the distances for
all pairs of objects in the nbd of x = 1 are not necessarily less than or equal
toe=0.1.
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Figure 1: Visualisation of Neighbourhoods & Tolerance Classes

Definition 5. Perceptual Tolerance Relation [8, 9]. Let (O,F) be a per-
ceptual system and let ¢ € R. For every B C F, the perceptual tolerance
relation =g . is defined as follows:

Zpe={(2,y) € Ox 0| ¢(x) — ¢(y) [< e},
Next, pre-classes are distinguished from tolerance classes.

Definition 6. Pre-Class. Let (O, F) be a perceptual system. For B C F and
e €R,aset X C O is a pre-class iff x =g, y for any pair z,y € X.

Definition 7. Tolerance Class. A maximal pre-class with respect to inclu-
sion is called a tolerance class.

The set coloured orange in Fig. 1.1 is a tolerance class, since no objects can
be added to the set and still satisfy the condition that any pair x,y € Orange
x Orange must be within ¢ of each other.

Theorem 1. [1] All tolerance classes containing x € O are subsets of the
neighbourhood N(z).

Proof. Given in [1]. O

Next, observe that objects can belong to more than one tolerance class.
Consequently, the following notation is required to differentiate between classes
and facilitate discussions in subsequent sections. The set of all tolerance classes
using only the objects in O is given by Hx, (O) (also called the cover of
0), a single tolerance class is represented by C' € Hx~, (O), and the set of
all tolerance classes containing an object x is denoted by C, C Hx, (O).
This section concludes with another tolerance relation similar to the weak

indiscernibility relation [6].
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Definition 8. Weak Perceptual Tolerance Relation [8] Let (O, F) be a
perceptual system and let ¢ € R. For every B C F the weak perceptual tolerance
relation =g is defined as follows:

M= {(7,y) €O xO: 3¢ € B || ¢i(w) — ¢i(y) [|,< €}

The weak tolerance relation can provide new information or relationships for
a set, of objects for a given application.

4 Tolerance Near Sets

Sets of objects that have similar descriptions are called near sets, and a method
for determining similarity is provided by way of the perceptual tolerance re-
lation (and to a lesser degree with the weak perceptual tolerance relation).
The following two definitions enunciate the fundamental notion of nearness
between two sets.

Definition 9. Tolerance Nearness Relation [8, 9]. Let (O, F) be a percep-
tual system and let X, Y C O,e € R. A set X is near to a set Y within the
perceptual system (O, F) (XEFY) iff there exists v € X and y € Y and there
is B C F such that z =5 .

Definition 10. Tolerance Near Sets [8, 9]. Let (O, F) be a perceptual sys-
tem and let ¢ € R, B C F. Further, let X, Y C O, denote disjoint sets with cov-
erings determined by the tolerance relation =g, and let Hx~, (X), Hx, (V)
denote the set of tolerance classes for XY, respectively. Sets X,Y are toler-
ance near sets iff there are tolerance classes A € Hx~, (X), B € H~, (Y') such

that A g B. o
Defs. 9 and 10 can be summarised in a single theorem.
Theorem 2. The following assertions are equivalent.
1. X,Y are tolerance near sets,
2. There are A € H~, (X), B € Hx, (V) such that A = B,
3. There are z € X, y € Y, B C I such that x =5, y.
Proof. Immediate from Def. 9 and Def. 10. O]

Definition 9 fits nicely in applications that emphasise objects (see, e.g., [1,
2]), while Definition 10 works best in applications that focus on tolerance
classes. Also, notice that tolerance near sets are a variation of the original near
sets using the indiscernibility relation [6]. Moreover, the original definition of
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tolerance near sets given in [8, 9] defines nearness in terms of pre-classes (as
opposed to tolerance classes as given in Definition 10), however the results
presented in [1] are obtained using tolerance classes, and so the definition was
adjusted accordingly. Finally, an example of tolerance near sets is given in
Fig. 1.3, where the colours represent different tolerance classes, and classes
with the same colour represent the situation where A > B. By contrast, the
ovals in Fig. 1.2 are not tolerance near sets.
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Figure 2: Precision vs. recall plot using tNM to perform CBIR on the SIM-
PLcity image database with query image 506 [11]

Figure 3: Top 5 query results (query image left).

5 Application Using Near System

A direct application of Defs. 7, 9, & 10, by way of the nearness measure t N M
(see [1]), is in the area of Content-Based Image Retrieval (CBIR). In this
problem domain, the goal is to retrieve all the images that are similar to a
query image based on the content of the image (rather than retrieval based on
the strings associated with the image). To perform CBIR, a nearness measure
is used to quantify the number of tolerance classes shared between disjoint
sets obtained from two different images. This measure can then be used to
rank all the images in a databased based on the query image. Finally, if the
database is partitioned into categories, precision vs. recall plots can be used to
demonstrate the ability of this approach to correctly retrieve images belonging
to the same category as the query image. This approach was implemented in
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the near system, introduced in [3], and the results are given in the following

Fig. 2 & 3.
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