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ABSTRACT
This article presents an approach to automating the creation of land-use/land-cover
classification (LULC) maps from satellite images using deep neural networks that
were developed to perform semantic segmentation of natural images. This work is
important since the production of accurate and timely LULC maps is becoming
essential to government and private companies that rely on them for large-scale
monitoring of land resource changes. In this work, deep neural networks re trained
to classify each pixel of a satellite image into one of a number of LULC classes.
The presented deep neural networks are all pre-trained using the ImageNet Large-
Scale Visual Recognition Competition (ILSVRC) datasets and then fine-tuned using
approximately 19,000 Landsat 5/7 satellite images of resolution 224 × 224 taken of
the Province of Manitoba in Canada. The result is an automated solution that
can produce LULC maps images significantly faster than current semi-automated
methods. The contributions of this article are the observation that deep neural
networks developed for semantic segmentation can be used to automate the task of
producing LULC maps; the use of these networks to produce LULC maps; and a
comparison of several popular semantic segmentation architectures for solving the
problem of automated LULC map production.

KEYWORDS
Land-use/land-classification; deep neural networks; fully convolutional networks;
semantic segmentation

1. Introduction

The creation of land-use/land-cover classification (LULC) maps is one of the most
common applications of remote sensing. Due to decreasing cost and increasing res-
olution of satellite imagery, many government and private industries are turning to
LULC maps as an important tool for large-scale monitoring of land resource changes.
These maps are vital in areas such as flood forecasting, urban and rural land-use
planning, resource management, and disaster management and planning (Treitz and
Rogan 2004). Consequently, the production of accurate and timely maps is becoming
increasingly important. Current approaches to producing LULC maps are typically
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semi-supervised (per pixel or object based) and require considerable user input to
ensure high classification accuracies. These semi-automated approaches can be prone
to error, take a significant amount of training and classification time, and suffer from
a lack of consistency – especially when multiple analysts are involved in the process
and/or when dealing with large multi-scene areas. Moreover, it is difficult to improve
accuracy and efficiency of these methods as they typically rely on pixel pattern match-
ing and manual user input. As a result, the problem considered in this paper is the
use of deep neural networks for producing land-use/land classification (LULC) maps
from satellite images to alleviate the aforementioned problems.

In the proposed process, each pixel in a satellite image must be classified into a
number of land-use classes (e.g. deciduous forest, marshland, fens, etc.), and the pro-
posed solution is only possible since automated systems based on machine learning
methods (Domingos 2015), called deep learning algorithms (Goodfellow, Bengio, and
Courville 2016), have advanced to a point where they can be applied to real-world
problems (LeCun, Bengio, and Hinton 2015). These systems excel by performing pat-
tern classification tasks humans find repetitive and tedious in nature – at significantly
faster speeds, have been shown to surpass human performance in some instances (He
et al. 2015b), and, once trained, produce consistent results. Recently, these networks
have been used to perform semantic segmentation of images (Long, Shelhamer, and
Darrell 2015; Shelhamer, Long, and Darrell 2017). This is the problem of partitioning
a digital image into a number of segments, where each segment captures some per-
ceptual object within the images. These networks are trained to make decisions on
pixel classes based on pixel feature values, local structure and texture, and high-level
perceptual content in the image. Thus, a principal contribution of this paper is the
observation that the problem of semantic segmentation of digital images directly links
to the challenge of classifying satellite image pixels into LULC categories.

The solution presented here is based on the fully convolutional network (FCN),
introduced by Long, Shelhamer, and Darrell (2015); Shelhamer, Long, and Darrell
(2017), that is trained to classify every pixel in a satellite image into one of a number
of land-use class. This work was a result of a pilot project funded by GeoManitoba,
which is part of the Ministry of Sustainable Development within the province of Man-
itoba. The goal of the project was to investigate whether machine learning methods
could reduce the amount of time required to produced LULC maps. GeoManitoba
is mandated to produce LULC maps of Manitoba for various land resource planning
activities by both government and private entities. For this reason, they have many
years worth of LULC maps of the Province of Manitoba generated from Landsat 5/7
data. While the lack of large labelled datasets are typically a barrier to applying deep
neural networks to new problem domains, GeoManitoba’s maps were used to create a
labelled dataset vital for training neural networks. The results contained in this arti-
cle were generated from this dataset. This article is an extension of the work reported
by Storie and Henry (2018), and the contributions of this article are: 1) the observa-
tion that deep neural networks developed for semantic segmentation can be used to
automate the task of producing LULC maps; 2) the use of FCN to produce LULC
maps; and 3) a comparison of this approach to conditional random field as a recurrent
neural networks (CRF-RNN) (Zheng et al. 2015) and multi-scale context aggregation
by dilated convolutions (Yu and Koltun 2015). This work represents a natural appli-
cation of deep learning neural networks, that were developed for performing semantic
segmentation of natural colour images, to remote sensing and geoanalytics.
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2. Deep Leaning Applications to Remote Sensing

This section provides background information on deep learning developments that
made the presented solution possible and its recent use in the field of remote sensing.

2.1. Deep Neural Networks

Since 2012 there has been a surge in applications of deep learning. These developments
were only possible due to the confluence of general purpose computing using graphics
processing units (GPUs) (Kirk and Hwu 2017), large labelled datasets (Russakovsky
et al. 2014), and the introduction of deep neural networks, which contain many more
layers and parameters than traditional neural networks (LeCun, Bengio, and Hinton
2015; Goodfellow, Bengio, and Courville 2016). In particular, Krizhevsky, Sutskever,
and Hinton (2012) created a deep learning model (AlexNet) used for image processing
tasks. AlexNet won the 2012 ImageNet Large-Scale Visual Recognition Competition
(ILSVRC) - by a significant margin - and largely popularized deep convolutional neu-
ral network (DCNNs). Briefly, a neural network is a mathematical abstraction based
(very) loosely on the behaviour of neurons in the brain. A neural network is com-
posed of layers of neurons, and the term deep learning characterizes a neural network
with many more layers and many more parameters than a traditional neural network.
These algorithms “learn” to perform tasks by extracting patterns from large labelled
datasets. They are exposed to an example, and the right answer for a given task is used
to tune the network. Through repeated training on large datasets, the network is able
to extract patterns and perform the correct action for a given input. The important
observation here is that a human has not explicitly programmed the system behaviour.
Instead, the algorithm “learns” during training based on labelled data. Thus, all the
impressive results achieved with deep neural networks are data driven through the use
of big-data datasets. Since 2012, DCNN have been successfully applied in many inter-
esting applications to produce amazing results, such as robotics (Levine et al. 2016),
speech recognition (Bahdanau et al. 2015), and natural language processing (Cho et al.
2014).

DCNN builds on the insight of LeNet created by LeCun et al. (1998), which is
widely recognized as the first convolutional neural network (CNN). Wang, Raj, and
Xing (2017) provide resourceful insight on the origin of deep learning models. A typical
DCNN model comprises of convolution layers, pooling layers, activation layers, and
fully-connected layers. AlexNet consisted of five convolutional and max-pooling layers,
and three fully-connected layers with a final 1000-way softmax (Li and Karpathy 2015)
that completes the model. Training AlexNet was only possible in a practical amount
due to the use of GPUs. In particular, the parallel structure of DCNNs make them a
perfect candidate for GPU-based acceleration. It is for this reason that GPUs play a
significant role in the practical implementation of DCNN (Chetlur et al. 2014). Sub-
sequent DCNNs models increased the depth of CNNs, and introduced new techniques
which improved training efficiency and accuracy of the models. See (LeCun, Bengio,
and Hinton 2015; Zhu et al. 2017) for a complete history of DCNN and reviews of
DCNNs models VGG (Simonyan and Zisserman 2014), ResNet (He et al. 2015a) and
fully convolutional networks (Long, Shelhamer, and Darrell 2015). In recent times,
DCNNs have been successfully adapted to solve remote sensing problems. Examples
of seminal work in this domain are given in the next subsection.
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2.2. Deep Neural Networks Related Work in Remote Sensing

Castelluccio et al. (2015) explored the use of DCNNs for classification of remote sens-
ing scenes using two contemporary architectures, namely CaffeNet (a modified version
of AlexNet) and GoogleNet (Szegedy et al. 2014). Moreover, they considered two
datasets, UC-Merced (21 classes) (Yang and Newsam 2010) and the Brazilian Coffee
Scenes (4 classes) (Penatti, Nogueira, and dos Santos 2015), since each dataset con-
tained unique feature. UC-Merced spatial and spectral characteristics (high resolution,
low level features, and RGB colour space) were closely matched to general optical im-
ages, while the Brazilian Coffee Scenes includes a special near infrared band typically
found in remote-sensing data. CaffeNet and GoogleNet were implemented to classify
both datasets independent of each other. Results from both models outperformed other
classical techniques paired. Although the results are impressive, this approach discards
spatial location and context information. Moreover, objects recognized in the input
data are classified by assigning label classes in form of probabilities, which means low
and high-level features are not visually represented.

Basu et al. (2015) proposed a novel classification framework for classifying satellite
images called DeepSat. 150 features were extracted from two datasets (SAT-4 and
SAT-6) containing four bands (red, green, blue and near infrared), and some features
extracted include energy, entropy, homogeneity, contrast, maximum probability, satu-
ration, intensity, and image channels. All features were normalized to lie in the range
[0, 1] before being fed to a deep belief network classifier trained using the contrastive
divergence algorithm (Carreira-Perpiñán and Hinton 2005). This network outperforms
the classical deep belief network classifier on the target dataset. However, this approach
is evaluated on high-resolution aerial imagery (1-m) containing four bands hence the
features considered are data dependent and makes it difficult to analyze the perfor-
mance of this approach for low-resolution satellite imagery(30-m) containing six bands
addressed in our work. Furthermore, this approach discards spatial location and con-
text information and only classifies high-order abstraction objects.

Marmanis et al. (2016) explore a system for classification of remote sensing images
by extracting representations from DCNNs that are pre-trained on ImageNet dataset.
The system follows a two stage classification scheme. The first stage feeds original
training data into a pre-trained DCNN model to extract information from activations
in the last layers of the pre-trained DCNN. This data is then fused to a single vector
reshaped into a 2-D array. The second stage uses this information to train a CNN
classifier supervised. This system has three positive implications: richer information
obtained in the deeper layers of pre-trained networks contributes to higher classi-
fication accuracy; information fusion from different layers influences accuracy since
multiple scales of relevant information exists at these layers; and, by reshaping the
single vector into 2-D array, a reduction of parameters occurs resulting in improved
processing of features by the CNN classifier. This approach is similar to transfer learn-
ing and fine-tunning of DCNNs (Yosinski et al. 2014a) on a target dataset for a task.
This is an effective way of training DCNNs when constrained with small datasets,
and is an approach employed in the work presented here. Although the results docu-
mented by the researchers are impressive, this method did not consider satellite data
with greater spectral resolution and geographical variations.

Zhang, Zhang, and Kumar (2016) compiled a technical tutorial on the state of art
in deep learning techniques for remote sensing. Similarly, Zhu et al. (2017) present
a comprehensive review of deep learning in remote sensing coupled with a detailed
list of resources. Also, Ball, Anderson, and Chan (2017) present a great survey of
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deep learning in remote sensing by highlighting challenges and open problems of deep
learning in remote sensing while introducing tools and theories to this community.

Lastly, this section concludes with work related to the problem considered in this
paper. Zhao et al. (2016) use Conditional Random Fields (CRFs) to perform the same
task as reported here. We choose to use the work by Zheng et al. (2015) since they
formulated a CRF as a Recurrent Neural Network (RNN) which allows the solution to
be trained end-to-end using back-propagation. Han, Zhong, and Zhang (2016) use un-
supervised convolutional sparse auto-encoders for spatial-spectral classification. This
paper considers hyperspectral imagery which can have 30-100s of individual bands
with considerable redundancy between t.hem For example the red band in Landsat
covers a spectral range of 1 nm, however within some hyperspectral systems this may
be covered by 5 individual bands. Hyperspectral systems are typically used in situa-
tions where a particular object (such as a rock) is sensitive to very specific wavelengths
that allow it to be differentiated from other similar objects. The challenge is to re-
duce the data redundancy to only those specific useful bands. Secondly, hyperspectral
imaging is not widely used in LULC mapping of large geographic areas where there
are broad, generalized LULC categories as there is an over collection of data and the
ability to distinguish between broad classes is much easier. Moreover, their approach is
unsupervised, while the data in this work was labelled by GeoManitoba. Finally, Zhao
et al. (2018) use a game-theoretic spectral-spatial classification algorithm using a CRF
model. Again, their approach is based on hyperspectral imagery, which is different than
the data used in this work. In particular, the authors were trying to distinguish be-
tween much more highly related vegetation covers which benefit from hyperspectral
data.

3. Semantic Segmentation Using Deep Neural Networks

The solution presented in this paper is based on neural networks developed to perform
semantic segmentation of digital images. This section presents the different semantic
segmentation neural networks used to generate the results in this paper. All of the pre-
sented methods stem from the work by Jonathan Long, Evan Shelhamer, and Trevor
Darrell in using fully CNNs for performing semantic segmentation of images, and sub-
sequent contributions their work inspired (see below). Semantic segmentation is the
process of partitioning an image such that each pixel in the image is assigned a unique
label corresponding to the perceptual content within the image. An example of seman-
tic segmentation is given in Fig. 1. Semantic Segmentation using deep neural networks
is one of the many problems that has gained significant traction lately. This problem
is considerably difficult - and different from problems such as image classification,
face recognition, etc. - since it involves pixel-level prediction. Nevertheless, a lot of
effort has been put into adapting the existing neural network architectures to solve
this problem. To this end, the following delves into some of the important semantic
segmentation architectures.

CNNs are a variant of neural networks which were specifically designed for the pur-
pose of computer vision tasks. The basic building blocks of CNN architectures are
layers which are capable of performing various functions. Broadly speaking, as the
input image progresses through these layers, either a filter is applied upon it or it is
sub-sampled to a smaller size. These operations finally lead to a fully connected layer,
where each neuron has connections to all of the output of previous layer. This layer
facilitates the classification task. The entire set of operations compute a general non-
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Figure 1. Example of semantic segmentation (Zheng et al. 2015).

linear function. If, however, the fully connected layer is re-interpreted as a convolution
layer (i.e. as a filter), then the CNN is called a deep filter or a fully convolutional net-
work (FCN) (Long, Shelhamer, and Darrell 2015; Shelhamer, Long, and Darrell 2017).
This modification is rather trivial and produces an output of re-sampled spatial di-
mension (i.e. spatially reduced in size). FCN forms the basis of the model that Long,
Shelhamer, and Darrell (2015) propose and is used to produce the results presented
in this paper.

To address the fact that the FCN produces sub-sampled output, the FCN is ap-
pended with deconvolution layers (Dumoulin and Visin 2016) which compensate for
the lost spatial information by up-sampling. The weights for the these layers can
also be learned using back-propagation. Additionally, a skip architecture is introduced
by Long et al. to enhance the coarse semantic information produced by traditional
convolutional layers with shallow, fine, appearance information. This new network ar-
chitecture, consisting of the original deep network and the up-sampling layers, is called
an FCN and it is end-to-end trainable (Long, Shelhamer, and Darrell 2015; Shelhamer,
Long, and Darrell 2017). The original network used by Long, Shelhamer, and Darrell
(2015) to define the FCN was the VGG (Simonyan and Zisserman 2014) network. The
same approach was used for this article.

The work by Long, Shelhamer, and Darrell (2015) was seminal in regards to the
problem of semantic segmentation. However, there were several extensions of the FCN
that were also reported at the beginning of the work reported here. As a result, sev-
eral methods were considered in order to find the best solution for the problem of
automating LULC map production. The first of these methods (after the FCN) was
conditional random field as a recurrent neural networks (CRF-RNN) (Zheng et al.
2015). CRF-RNNs were developed on the premise that good feature representations
are needed to produce the best results for a semantic segmentation task. Specifically,
the course output due to the large receptive field of convolution and the max pooling
layers reduce the global semantic information available in the network. Probabilistic
graphical models such as conditional random fields (CRFs) have proven to be suc-
cessful as a post processing technique for semantic segmentation. Building upon this,
Arnab et al. (2015); Zheng et al. (2015), utilize the capacity of CRFs by implementing
them in the form of a recurrent neural network (RNN) which is appended to the FCN.
This modification leads to yet another network that can be trained end-to-end using
back-propagation .

The other method used for comparison with FCN is multi-scale context aggregation
by dilated convolutions (Yu and Koltun 2015). Deep learning models for semantic seg-
mentation are based on adaptations of convolutional networks that had originally been
designed for image classification. However, dense prediction problems such as seman-
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tic segmentation are structurally different from image classification. Yu and Koltun
(2015) proposes a new convolutional network module that is specifically designed for
dense prediction by removing vestigial components and introducing a context module.
The presented module uses dilated convolutions to systematically aggregate multi-
scale contextual information without losing resolution. The architecture is based on
the fact that dilated convolutions support an exponential expansion of the receptive
field and linear parameter accretion without loss of resolution or coverage.

The front-end of this network is adapted from VGG-16 network (Simonyan and
Zisserman 2014) for dense prediction by removing the last two pooling and striding
layers. Furthermore, convolutions in all subsequent layers were dilated by a factor
of 2 for each pooling layer that was ablated. These vestiges were considered to be
counter-productive for dense prediction. This network is labelled Dilation 8 Frontend
(D8 Frontend). Next, the context module was designed to increase the performance of
dense prediction architectures by aggregating multi-scale contextual information. The
basic context module has 7 layers that apply 3×3 convolutions with increasing dilation
factors as 1, 1, 2, 4, 8, 16, and 1. Each of these convolutions is followed by a pointwise
truncation max(·, 0). A final layer performs 1× 1× C convolutions and produces the
output of the module, where C is the number of classes. Modern semantic segmentation
networks integrate multi-scale contextual information via successive pooling and sub-
sampling layers that reduce resolution until a global prediction is obtained. The dilated
network solves this problem by exponentially increasing the receptive field without
down-scaling the image severely. This network is labelled D8 Context.

Finally, there are many other FCN extensions that were not considered in this work,
but are related works (Shelhamer, Long, and Darrell 2017). Pathak, Krahenbuhl, and
Darrell (2015) introduce an approach to semantic labelling by constraining FCNs to
a latent distribution of ground-truth pixel labels. In this weakly supervised setting,
the network is presented with training samples paired with image level tags obtained
from label classes present in the ground-truth, a combination of constraint settings are
used to extract the image level labels. Network output is produced by optimization
of a loss function to closely follow the latent distribution. Papandreou et al. (2015)
incorporates expectation-maximization algorithm with DCNNs for semantic segmen-
tation in the weakly supervised setting. The algorithm estimates latent pixel labels
while optimizing the DCNNs parameters using stochastic gradient descent. Dai, He,
and Sun (2015) investigate the use of bounding box annotations independently or as
additional source of supervision to train FCNs for semantic segmentation. Segmen-
tation masks are estimated from the bounding boxes using region proposal methods.
Hong, Noh, and Han (2015) perform semantic segmentation with decoupled DCNNs.
This approach decouples a DCNN into classification and segmentation space, each
independent of the other, and learns from a large number of weak image level anno-
tations and a few dense-pixel labels. Bridging layers are introduced between the two
network spaces, which delivers class-specific information from the classification space
to the segmentation space. Semantic labelling is achieved by optimizing two separate
objective functions for each space while both networks collaborate by sharing infor-
mation. This method aims to train DCNNs in the weakly supervised settings where
availability of dense-pixel labels is limited.
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4. Network Modifications

This section presents the modifications to the networks given in Section 3 that were
necessary to produce the results reported below. In order to discuss these changes, this
section begins with a brief review of a convolutional neural network layer using the
notation in (Li and Karpathy 2015). A convolutional layer consists of a rectangular
volume of neurons as depicted in Fig. 2. A depth slice (depicted as the black rectangle
in Fig. 2) is a rectangular array of neurons taken from the volume. Each layer is
characterized by its depth (K), stride (S), zero-padding (P ), receptor field size (F ),
and input volume dimension (W ). Each neuron in the volume uses a receptor field of
values from the previous layer to calculate its output. This requires a set of weights
equal to the size of the receptor field multiplied by the input depth. In order to
reduce the computational costs of a convolutional layer, the neurons in each depth
slice share a set of weights and a bias. Thus, the number of parameters (i.e. weights)
required for each volume is equal to its depth × receptor field area × input depth
+ one bias for each depth slice, i.e. K × F 2× input depth + K. For instance, the
original VGG network operated on RGB images and set F = 3. Thus, the input
depth to the Conv1.1 layer was 3 and the number of parameters for this layer is
64 × 32 × 3 + 64 =1,792. Furthermore, the convolutional layer output dimension is
calculated as (W −F +2P )/S +1. Similarly, for the VGG network P = S = 1, which
gives the output dimension for Conv1.1 is (224 − 3 + 2)/1 + 1 = 224.

As mentioned in Section 3, the three networks considered in this paper are FCN,
CRF-RNN, and D8 (both frontend and context). These networks were almost unal-
tered from their original publications. The only change required in this work is due to
the fact that Landsat 5/7 satellite images contain six bands (red, green, blue, and three
infrared channels) instead of the RGB-based images used in the original networks. All
the networks reported in Section 3 are based on convolutional neural networks. As was
mentioned, in these structures, neurons are grouped into three-dimensional volumes,
and these volumes are grouped together to form layers. For example, the input and
output dimensions of each layer in the FCN network used in this work are given in Ta-
ble 1. Notice, that the base of this network is almost identical to the VGG (Simonyan
and Zisserman 2014) network. The only difference is that the last FC-1000 layer has
been removed and three deconvolutional layers have been added. This specific struc-
ture corresponds to the FCN-8 network which is described in great detail by Long,
Shelhamer, and Darrell (2015); Shelhamer, Long, and Darrell (2017). In the case of
satellite images, the first layer (i.e. the input image) becomes 224 × 224 × 6, which
means that the input to the first convolutional layer is doubled from 224 × 224 × 3.
This is handled in our networks by doubling the number of parameters in this first
layer (see, e.g. Fig. 3). Note, the number of neurons does not increase because the layer
dimensions remain 224× 224× 64), only the number the weights for this layer doubles
since 64 × 32 × 6 + 64 =3,520. Furthermore, both randomly initializing these weights
and copying the existing pre-trained weights were considered in this work, with no
observable differences. As a result, all the weights in the new layers were initialized
with random values for all the results presented in this paper.

5. Dataset Background and Pre-Processing

In this work, Landsat 5/7 data was used, where each pixel in a satellite image cor-
responds to a 30 m × 30 m square area of land. Moreover, each pixel is associated
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Figure 2. Example of a convolutional layer organized into a volume of neurons, where the black area represents
a depth slice of neurons (Li and Karpathy 2015).
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Figure 3. Example of network modifications performed in this work. (a) First six layers of the FCN-8 using
RGB image input (i.e. 3 bands), and (b) first six layers of the FCN-8 with Landsat 5/7 (i.e. 6 bands).

with a tuple of values containing three infrared channels in addition to the typical
RGB channels found in most digital images. The labelled dataset was created using
existing Landsat 5/7-based LULC maps produced by GeoManitoba. The maps pro-
vided by GeoManitoba are for the southern agricultural growing region of Manitoba
(see the red outline in Fig. 4), which will be referred to as the southern extent of
Manitoba. The size of this region is approximately 148,800 km2. These maps were cre-
ated using semi-automated methods (see, e.g. Ban, Gong, and Giri (2015)), and were
then ground-truthed. A total of eighteen Landsat 5/7 scenes (see the green outlines in
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Table 1. Input/output characteristics of the FCN-8 network used in this work.

Input Output

Layer Height Width Depth Height Width Depth

Input Image 224 224 6
Conv1.1 224 224 6 224 224 64
Conv1.2 224 224 64 224 224 64
Pool1 224 224 64 112 112 64
Conv2.1 112 112 64 112 112 128
Conv2.2 112 112 128 112 112 128
Pool2 112 112 128 56 56 128
Conv3.1 56 56 128 56 56 256
Conv3.2 56 56 256 56 56 256
Conv3.3 56 56 256 56 56 256
Pool3 56 56 256 28 28 256
Conv4.1 28 28 256 28 28 512
Conv4.2 28 28 512 28 28 512
Conv4.3 28 28 512 28 28 512
Pool4 28 28 512 14 14 512
Conv5.1 14 14 512 14 14 512
Conv5.2 14 14 512 14 14 512
Conv5.3 14 14 512 14 14 512
Pool5 14 14 512 7 7 512
FC6 7 7 512 7 7 4096
FC7 7 7 4096 7 7 4096
FC-Final 7 7 4096 7 7 19
Deconv1 7 7 19 14 14 512
Deconv2 14 14 512 28 28 256
Deconv3 28 28 256 224 224 19

Fig. 4) were used to produce the maps. LULC maps are produced from satellite images
by classifying each pixel in the satellite image to one of several land-use labels (see,
e.g., Fig. 5). Example labels include water, grassland, marsh, deciduous, coniferous,
road, and agriculture. The full list is given in Fig. 6, and an example of a GeoManitoba
LULC map created from Landsat 5/7 data from 2004 is given in Fig. 7. LULC maps
have many applications, including flood forecasting, urban and rural land-use plan-
ning, resource management, and disaster management and planning. GeoManitoba
is mandated to create provincial land-use maps on a regular basis to assist in these
activities. GeoManitoba estimates that the time to create a single LULC map using
semi-automated methods is approximately 4,800 hours (or 600 work days). However,
due to limits on personnel from budget restraints, and the ability to obtain relatively
cloud free imagery, the process of creating LULC maps for the southern extent of
Manitoba can take as long as 2-3 years to produce and can incur significant labour
costs in the process. Finally, as has been mentioned, a network must provide a label for
each pixel. As a result, the GeoManitoba dataset was augmented with satellite images
containing clouds and a new class was added to the list provided by GeoManitoba.
Without this addition, the final system would always misclassify clouds into one of
the other land-use classes.

The LULC maps provided by GeoManitoba are produced using imagery acquired
from mid-May to late August. The dates correspond to the normal growing season
and also represent a period where most vegetation is in bloom. By using this range of
dates, any seasonality effects are minimized. Secondly, there was no effort to minimize
radiation differences as they are natural and cannot be predicted. By not controlling
radiation differences the neural network is better able to learn the various impacts
the radiation differences will have on the particular LULC category and better able to
classify future images into the correct category. Lastly, for the purposes of this research
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the neural network was trained using 8-bit data and consequently can only classify
8-bit data. Future work is underway to allow for the use of Landsat 8, 16-bit data.

Figure 4. Province of Manitoba with the southern agricultural growing region (red) and the associated
Landsat 5/7 scenes that cover this area (green).

(a) (b)

Figure 5. Example LULC map. (a) RGB components of a Landsat 7 satellite image of Manitoba, and (b)
the GeoManitoba LULC map produced from (a). Note, each pixel has a dimension of 30 m × 30m and, since
each tile is of size 224 × 224, the images in (a) & (b) is have dimensions of 6.72 km × 6.72 km.

Agriculture

Deciduous

Water

Grass

Mixed wood

Marsh

Treed and open bogs

Treed rock

Conifer

Open deciduous

Forage crops

Cultural

Cutovers

Gravel

RoadBurns

Fens

Clouds

Figure 6. GeoManitoba land-use classes

6. Data requirements

The deep neural networks used in this work were all originally designed around a
specific input image resolution. For example, the FCN network used images of size
224 × 224. To produce a working solution, the original input image resolution for
these networks was not modified. In other words, the input resolution of the candi-
date networks was not increased to the size of the southern extent of Manitoba. This
decision was made based on the following observations. First, these networks require
a very large number of images to train. For example, all the presented solutions are
based on the VGG network that was developed for the ILSVRC (Russakovsky et al.
2014), where the training set consisted of approximately 1.2 million images and 1000
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Figure 7. 2004 LULC map provided by GeoManitoba.

categories. Keeping the full resolution of the LULC maps produced by GeoManitoba
would mean that only three training images were available. Furthermore, despite the
methods reported in this section, there was simply not sufficient data to train a full
network from scratch. As a result, transfer learning techniques (also called fine-tuning)
were employed for all the networks (Yosinski et al. 2014b). Transfer learning consists
of adapting a deep neural network that has been pre-trained on the ILSVRC problem
by training with a smaller dataset for a related – but different – problem. By maintain-
ing the original input resolution for these networks, transfer learning was employed
and the images (both the raw satellite data and associated LULC maps) were divided
into tiles that dramatically increased the number of images (and corresponding LULC
map labels) available for training. In particular, for the area shown in Fig. 7, this
approach produced 19,012 images of size 224× 224 for this work, which were divided
into training and validation sets of size 18,054 and 958, respectfully. The process used
to produce the individual tiles from the full southern extent is depicted in Fig. 8. The
first set of tiles were produced by the method shown in Fig. 8(b), namely the tiles
were non-overlapping. To further increase the size of the dataset, the tiling process in
Fig. 8(c) was used to produce more tiles. In this case, tiles were overlapped by half
the size of the network input resolution, i.e. 224/2 = 112. Furthermore, by starting
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this process in each of the four corners of the full map depicted in Fig. 8(a), the total
number of tiles generated in Fig. 4 (b) was able to be increased by more than 4× due
to the fact that the resolution of the map in Fig. 8(a) is not a multiple of 224.

(a) (b) (c)

Figure 8. Illustration depicting the tiling process. (a) GeoManitoba’s LULC map of southern Manitoba, (b)
non-overlapping tiles, and (c) 1/2 tile overlap.

7. Experiment, Results, and Analysis

This section presents the accuracy of the trained networks and samples of the output
LULC maps. The networks identified in Section 3 were trained with the dataset de-
scribed in Section 6. The results of average accuracy of the network mentioned above
are reported in Table 2, which was a comparison of the networks to find the solution
that performed best on the GeoManitoba dataset. These results were produced using
an NVIDIA Digits DevBox containing four Titan X GPUs with 12GB of memory per
GPU, 64 GB DDR4 RAM, and a Core i7-5930K 3.5 GHz processor. Notice, that the
best results in Table 2 were achieved with the FCN-8 VGG-16 network, which pro-
duced an average accuracy of 86.77%. The training time for these networks ranged
from 7-10 days using a single Titan X for each network.

Table 2. Results of initial comparison.

Network type Language/platform Accuracy

FCN-VGG16 TensorFlow 86.77
D8 Frontend TensorFlow 86.04
D8 Context TensorFlow 81.50
CRF-RNN Caffe 76.18

With respect to the FCN, both VGG-16 and VGG-19 networks were considered
early in testing, but the VGG-16 quickly outperformed the VGG-19 network and was
used for the remainder of the tests (as well as the base for the D8 and CRF-RNN
networks). Additionally, these networks were trained using 8-bit Landsat 5/7 data.
In an attempt to produce a solution that works for 16-bit Landsat 8 data, Top of
Atmosphere (ToA) (Flood 2014) values were used to train a new FCN network. Here,
the idea was to convert 8-bit data to ToA values for training so that trained network
could classify 16-bit Landsat 8 values that are also converted to ToA. While this
approach did not work on Landsat 8 data, it did improve the overall average accuracy
of this network to 88.00%. Consequently, the remainder of the results and analysis on
the FCN solution is based on the network trained with ToA values. Lastly, a sample
of the results of this network from the validation set (and the associated GeoManitoba
ground-truth labels) is given in Figs. 9 & 10, the full classification for the southern
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extent of Manitoba is given in Figs. 11 & 12, and the classification time (based on
a Titan X) for the entire southern extent of Manitoba is 8 minutes and 42 seconds.
Observe, that Fig. 11 was produced by tiles from the both the training and validation
sets, while none of the tiles used to produce Fig. 12 were used in the training process.

The worst performing network in our experiments is the CRF-RNN, ironically this
network was designed to extend FCNs for better classification accuracy by considering
relationship between pixels (spatial cues). CRF-RNN in our case did not perform as
expected. A possible explanation to this degradation in performance is the spectral
variability inherent in the data. When considering low-spatial resolution (10-30 m)
images associated with Landsat 5/7 satellite sensors the many spectral bands which
gives variability to Land-cover classes significantly influences classification accuracy.
The FCNs perform better in this case because the max pooling layers de-emphasize
the importance of neighbouring pixels when considering fine details, thus placing more
importance on spectral information. In contrast the low spatial resolution and multiple
spectral scenes does not give to the strengths of CRF-RNN, hence the degradation in
performance. From reviews of other works, CRF-RNN or CRF post-processing tech-
niques are typically applied to high-spatial resolution (0.41 - 4 m) remote sensing
imagery containing 3-4 spectral bands (see, e.g. Fu et al. (2017); Zhao et al. (2016,
2018)).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Sample validation set results. (Top row) semi automated labellings, and (bottom row) result using
FCN network with ToA values.

Some interesting observations can be made about these results. First, there are
two reasons for the loss of accuracy. One is the fact that FCN is not sensitive to
fine details that exist at the single pixel level. This is due to the down-sampling and
corresponding up-sampling present in the FCN network (Yu and Koltun 2015). This
problem combined with the fact that the spatial resolution of the data is 30m means
many of the roads and rivers – features that exist as a single pixel width – disappear as
a result of the fine detail loss. Examples of this can be seen in Figs. 7 & 10. The second
reason for the low accuracy is that there may be cases when the FCN output is correct
and the original LULC maps is incorrect. GeoManitoba estimates their dataset is 90%
accurate. Here, it should be also be noted, the fine details associated with roads and
small bodies of water can be easily be added in post-processing through the application
of image masks. Our experience is this process can improve the average accuracy by
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Sample validation set results. (Top row) semi automated labellings, and (bottom row) result using
FCN network with ToA values.

Figure 11. Final 2004 Landsat 7 LULC map produced by the FCN network using ToA input using both
validation and training sets.
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Figure 12. Final 2010 Landsat 7 LULC map produced by the FCN network trained on 2004 data using ToA
input.

0.25%, and an example of this technique is given in Fig. 13.

(a) (b)

Figure 13. Example demonstrating post-processing of road and water classes.

Next, Tables 3 - 6 give the the percent accuracy for each class, the total number
of pixels classified for each class, and the total number of pixels for each class in the
2004 LULC map provided by GeoManitoba. Note, for the first two tables, the rows
correspond to ground truth and the columns to the FCN prediction. The values from
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the first two files were derived from the 2004 validation set, which contains 958 six
banded satellite images of size 224x224. Here it is important to note a few things.
First, the No data class is important from an overall system point of view since it
is necessary for the network to be able to classify the pixels around the edge of a
Landsat scene correctly when working with real data. However, this class raises the
overall average of our approach since it is the easiest label for the network to learn to
classify. Without this class, the average classification error drops to 87.35%. Similarly,
the next two lowest classes are Burns and Road, with 44.34% and 57.20% accuracy,
respectively. Notice, that Burns accounts for only 106/48, 068, 608 = 2.2 × 10−4%
of the total labels in the validation set. With respect to roads, this problem was
discussed above (i.e. they are two narrow for the FCN-8 network to reliably detect)
Removing, the No data, Burns, and Roads categories from the results produces an
overall average accuracy of 87.96%. Observe that the above considerations have not
dropped the overall average accuracy below 87%. Another important point regarding
the class Burns is that this category represent only 390/153, 158, 638 = 2.5 × 10−4%
of the total pixels in the 2004 LULC map (i.e. ground truth labels) provided by
GeoManitoba, which is quite close to the representation in the validation set. Thus,
this class is significantly underrepresented in the original dataset, making it difficult
to classify by the neural network.

Table 3. Percentage accuracy for each class from FCN network.

N
o

d
a
t
a

A
g
r
ic

u
lt
u
r
e

D
e
c
id

u
o
u
s

W
a
t
e
r

G
r
a
s
s

M
ix

e
d
w
o
o
d

M
a
r
s
h

T
b
o
g

T
r
o
c
k

C
o
n
if
e
r

B
u
r
n
s

O
p
e
n

d
e
c
i.

F
o
r
a
g
e

C
u
lt
u
r
a
l

C
u
t
o
v
e
r
s

G
r
a
v
e
l

R
o
a
d

F
e
n
s

C
lo

u
d

No data 99.94 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Agriculture 0.00 96.09 0.69 0.02 1.72 0.01 0.43 0.00 0.00 0.00 0.00 0.02 0.24 0.01 0.00 0.00 0.76 0.00 0.00
Deciduous 0.00 2.07 85.88 0.30 6.10 2.24 1.21 0.08 0.01 0.15 0.00 0.95 0.34 0.03 0.15 0.02 0.45 0.00 0.00
Water 0.00 0.24 0.77 95.98 0.69 0.24 1.75 0.05 0.05 0.08 0.00 0.08 0.02 0.02 0.00 0.01 0.02 0.00 0.00
Grass 0.00 7.22 7.12 0.27 80.36 0.40 1.56 0.01 0.00 0.07 0.00 0.45 0.95 0.08 0.02 0.03 1.45 0.00 0.01
Mixedwood 0.00 0.06 5.52 0.34 0.86 83.01 1.45 1.21 0.86 4.66 0.00 1.07 0.02 0.02 0.51 0.02 0.38 0.00 0.00
Marsh 0.00 5.71 4.51 2.21 6.00 2.47 75.59 1.10 0.11 0.54 0.00 1.13 0.28 0.00 0.05 0.00 0.28 0.01 0.00
Tbog 0.00 0.00 0.44 0.12 0.03 2.32 1.63 90.10 0.69 3.74 0.00 0.70 0.00 0.00 0.14 0.00 0.06 0.00 0.00
Trock 0.00 0.00 0.34 0.74 0.05 10.28 0.47 3.82 72.84 10.81 0.00 0.10 0.00 0.00 0.40 0.00 0.13 0.00 0.00
Conifer 0.00 0.01 0.65 0.23 0.28 10.35 0.61 3.47 2.59 80.35 0.00 0.72 0.00 0.00 0.54 0.01 0.18 0.00 0.00
Burns 0.00 16.98 0.94 0.00 24.53 2.83 1.89 0.94 0.00 0.94 44.34 0.00 0.00 0.00 0.00 0.00 6.60 0.00 0.00
Open deci. 0.00 0.90 8.96 0.24 4.81 3.76 2.10 1.02 0.02 1.40 0.00 75.93 0.15 0.00 0.21 0.04 0.44 0.00 0.01
Foreage 0.00 4.21 1.79 0.04 5.62 0.04 0.37 0.00 0.00 0.00 0.00 0.08 86.93 0.02 0.01 0.00 0.88 0.00 0.00
Cultural 0.00 1.46 1.60 0.55 5.53 0.45 0.11 0.10 0.02 0.06 0.00 0.03 0.13 86.93 0.00 0.03 2.98 0.01 0.03
Cutovers 0.00 0.01 2.46 0.05 0.32 4.74 0.31 0.70 0.48 2.89 0.00 0.73 0.07 0.00 86.86 0.02 0.36 0.00 0.00
Gravel 0.00 1.93 5.44 3.63 10.05 1.44 0.41 0.13 0.03 0.65 0.00 1.49 0.06 0.39 0.36 73.06 0.92 0.00 0.01
Road 0.01 18.84 4.60 0.13 12.99 1.71 0.69 0.12 0.07 0.45 0.00 0.41 1.54 1.06 0.15 0.04 57.20 0.00 0.01
Fens 0.00 0.00 0.01 0.06 0.00 0.03 3.15 0.59 0.00 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.07 96.02 0.00
Cloud 0.02 2.01 4.49 0.12 8.83 0.20 1.55 0.00 0.00 0.01 0.00 0.37 0.56 0.12 0.00 0.11 0.59 0.00 81.02

Also, note several of the categories where misclassified to other similar categories.
For example, the network misclassified the following similar classes.

• 4.66% of the Mixedwood class to the class Conifer

• 10.28% of the Conifer class to the class Mixedwood

• 7.22% of the Grass class to the class Agriculture

• 5.62% of the Forage class to the class Grass

• 8.96% of the Open deciduous class to the class Deciduous

These observations also underscore the importance of ground truth validation of the
system output to result actual field data (rather than just using the labels provided
by GeoManitoba).

Next, observe that the process of augmenting the dataset described in Section 6 did
not result in overfitting. This was prevented by the use of an independent validation
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Table 4. Total number of pixels classified for each class from FCN network.
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Agriculture 68 14065000 100930 3230 252420 1393 62349 15 5
Deciduous 273 137920 5712100 20150 405700 149220 80625 5203 710
Water 56 11229 36366 4525100 32452 11247 82478 2133 2446
Grass 207 500520 493470 18873 5570500 27681 107930 496 299
Mixedwood 82 1843 157030 9567 24566 2359700 41269 34489 24453
Marsh 64 166000 130960 64198 174220 71877 2195900 31896 3230
Tbog 63 52 6432 1796 496 33737 23668 1308100 10035
Trock 2 19 1288 2847 177 39404 1815 14627 279150
Conifer 16 207 10231 3698 4486 163140 9563 54649 40738
Burns 0 18 1 0 26 3 2 1 0
Open deci. 46 10995 109950 2918 59064 46191 25825 12507 270
Foreage 7 61092 26021 621 81651 525 5386 2 6
Cultural 0 3265 3576 1232 12392 1001 242 224 36
Cutovers 0 47 8364 184 1077 16128 1048 2393 1635
Gravel 0 572 1614 1077 2979 426 123 39 9
Road 87 172180 42006 1159 118720 15617 6332 1110 654
Fens 0 0 1 4 0 2 219 41 0
Cloud 4 405 904 24 1778 41 312 1 0

Table 5. Total number of pixels classified for each class from FCN network.
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No data 113 0 6 2 0 10 0 85 0 1
Agriculture 116 14 3477 34855 1151 59 178 111740 0 188
Deciduous 10284 4 63272 22325 1670 9993 1590 30022 1 205
Water 3591 0 3925 913 939 199 598 1062 0 11
Grass 5007 22 31162 65791 5772 1063 1961 100330 0 692
Mixedwood 132450 2 30425 658 534 14386 461 10813 4 11
Marsh 15709 2 32680 8171 89 1405 94 8088 209 116
Tbog 54278 1 10194 23 11 1966 28 902 38 1
Trock 41435 0 365 11 14 1543 9 513 1 0
Conifer 1266200 0 11390 56 75 8574 111 2778 0 2
Burns 1 47 0 0 0 0 0 7 0 0
Open deci. 17137 0 931660 1878 61 2543 464 5389 1 73
Foreage 49 0 1134 1262600 276 206 32 12755 1 66
Cultural 134 0 63 297 194870 8 75 6672 14 61
Cutovers 9822 0 2498 226 9 295690 75 1210 0 6
Gravel 193 0 441 19 115 106 21663 272 1 2
Road 4129 2 3751 14044 9665 1333 325 522780 2 63
Fens 0 0 0 1 0 4 0 5 6678 0
Cloud 3 0 74 112 24 0 22 119 0 16321

set. Also, the lack of overfitting is further evidenced by the fact the network is able to
successfully classify the 2010 Landsat 7 dataset, which was not used in the training
process since there are no corresponding labels for this year. Taking overlapping tiles
from 2004 increases the amount of data available for training, which is the fundamen-
tal reason for the improvements in accuracy. Deep neural networks require significant
amounts of data to achieve high accuracy rates. As an example, approximately 1.2
million images were required before deep neural networks could perform well on the
ImageNet problem, where the goal is to classify an unknown image into one of a
thousand categories. In addition, overlapping tiles are possible for the GeoManitoba
dataset due to the unique nature of producing LULC maps. From a pixel classifi-
cation point of view, any satellite image of Manitoba is a valid image that requires
classification. Thus, overlapping is not an issue since the new window/tile is also a
valid problem. Here, the network learns to classify the pixels based on individual pixel
feature values, the values of surrounding neighbours, low-level image characteristics
(such as 6-banded “colours”, edges, and texture), and high-level perceptual content
in the image. Thus, overlapping tiles was a great way to augment the dataset (which
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Table 6. Results of initial comparison.

Total labels Percentage of total

No data 67328000 30.54
Agriculture 46492000 21.09
Deciduous 21248000 9.64
Water 15454000 7.01
Grass 23441000 10.63

Mixedwood 9610600 4.36
Marsh 9515700 4.32
Tbog 5594000 2.54
Trock 1554400 0.70
Conifer 5910500 2.68
Burns 390 1.77 × 10−4

Open deci. 4610900 2.09
Foreage 4819400 2.19
Cultural 694080 0.31
Cutovers 1020800 0.46
Gravel 122860 0.06
Road 2982000 1.35
Fens 36163 0.02
Cloud 51590 0.02

was required for higher accuracy), without overfitting the data.
Finally, the northwest corner of the the maps in Figs. 11 & 12 are significantly

different. Since the results of the FCN have been validated this discrepancy is explained
as follows. The majority of land cover change within the northwest section of the study
area can be attributed to one of the following reasons. There is considerable land cover
that was original classified as tree rock or mixedwood forest that are now classified as
conifer forest. Over the period of 6 years between the 2004 and 2010 LULC maps, the
trees may have matured sufficiently to become spectrally dominant. Secondly, there
are a variety of smaller changes (treed bog to forest cover) than can occur naturally
over time as landscape age and mature.

8. Conclusions

This article presented an approach for automating the production of LULC maps using
an FCN. The best solution produced an average accuracy of 88%. Additionally, once
trained, this approach can produce a map of the southern extent of Manitoba in 8
minutes and 42 seconds, which represents a phenomenal reduction in the 4,800 hours
required by the current semi-automated approach. An important observation that
the solution work presented here should be viewed as a solution to freeing up people
from the tedious task of producing LULC maps, rather than eliminating a job. This
solution will allow technicians to focus on analysis of problems and results rather than
performing repetitive pattern classification, tasks which people find tedious and are
prone to error. Future work will include extending the FCN training process to multiple
GPUs to reduce the amount of training required. Additionally, future work will consist
of performing real-world ground-truthing on the results to statistically evaluate the
actual accuracy of the results. It could be the case that our system is performing better
than 88% since GeoManitoba estimate their labels are approximately 90% accurate.
Finally, producing a valid solution for 16-bit Landsat 8 is of utmost importance. The
approach here was attempted on Landsat 8 data that was labelled ourselves, but the
best accuracy that could be produced was 82.3%. This lower accuracy is likely due to
the fact that the Landsat 8 labels were created by ourselves – rather than GeoManitoba
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– and the fact that we normalized the 16-bit data to 8 bits. The immediate next steps
of this work is to training a network to work directly on 16-bit data and to produce a
dataset to train it.
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