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Abstract 
Large context problems (LCP) are useful in teaching the history of science. In this article we 
consider the brachistochrone problem in a context stretching from Euclid through the Bernoullis. 
We highlight a variety of results understandable by students without a background in analytic 
geometry. By a judicious choice of methods and themes, large parts of the history of calculus can be 
made accessible to students in Humanities or Education.  
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Introduction 
 
Each year the University of Winnipeg offers several sections of an undergraduate mathematics 
course entitled MATH-32.2901/3 History of Calculus (Babb, 2005). This course examines the main 
ideas of calculus and surveys the historical development of these ideas and related concepts from 
ancient to modern times. Students of Mathematics or Physics may take the course for Humanities 
credit; the course surveys a significant portion of the history of ideas and in fact is cross-listed with 
Philosophy. On the other hand, many students in Education take History of Calculus (H of C) to fulfill 
their Mathematics requirement; it is therefore necessary that the course offer solid mathematical 
content. Unfortunately, a significant fraction of these latter students are weak in pre-calculus 
material such as analytic geometry. Nevertheless, H of C welcomes the weak and the strong students 
together, and covers technical as well as historical themes. 
 
In Stinner and Williams (1998) the authors enumerate the benefits of studying large context 
problems (LCP) in making science interesting and accessible. In their words ‘the LCP approach 
provides a vehicle for traversing what Whitehead (1967) refers to as "the path from romance to 
precision to generalization"(p. 19).’ For H of C, a useful LCP is the Brachistochrone Problem: the 
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solution history of finding the curve of quickest descent. A focus on the brachistochrone motivates 
results ranging from Greek geometry, past the kinematics of Oresme and Galileo, through Fermat 
and Roberval to the Bernoullis, and the birth of the calculus of variations. By careful selection of 
material, it is possible to find proofs accessible even to weak students, while still stimulating 
mathematically strong students with new content. 
 
Quickest Descent in Galileo 
 
One of the topics considered by Galileo Galilei in his 1638 masterpiece, Dialogues Concerning Two New 
Sciences, is rates of descent along certain curves. In Proposition V of “Naturally Accelerated Motion”, 
he proved that descent time of a body on an inclined plane is proportional to the length of the 
plane, and inversely proportional to the square root of its height (Galilei 1638/1952, p.212). 
Denoting height by H, length by L and time by T, we would write 
 

HkLT /=   (1) 
   
where k is a constant of proportionality. In fact, as we point out to students, this formulation is 
slightly foreign to the thought of Galileo; for reasons of homogeneity, he only forms ratios of time 
to time, length to length, etc. He therefore says that the ratio of times (a dimensionless quantity) is 
proportional to the ratio of lengths, inversely proportional to the ratio of square roots of heights. 
Galileo proves (1) in a series of propositions starting with the “mean speed rule”: 
 
 ‘The time in which any space is traversed by a body starting from rest and uniformly 
 accelerated is equal to the time in which that same space would be traversed by the same 
 body moving at a uniform speed whose value is the mean of the highest speed and the 
 speed just before acceleration began.’  (Proposition I, Galilei 1638/1952, p.205).  
 
It is insufficiently well-known that this rule had been proven geometrically by Nicole Oresme three 
centuries earlier! Oresme’s very accessible geometric derivation is presented early in H of C. (Babb, 
2005) 
 
Moving closer to the question of quickest descent, with his Proposition VI, Galileo established the 
law of chords: 
 

‘If from the highest or lowest point in a vertical circle there be drawn any inclined planes 
meeting the circumference, the times of descent along these chords are each equal to the 
other’. (Galilei 1638/1952, p.212) 

    
Galileo’s proofs are given in a series of geometric propositions. Unfortunately, many of our students 
would identify with the complaint that Galileo places in the mouth of Simplicio:  
 
 ‘Your demonstration proceeds too rapidly and, it seems to me, you keep on assuming that 
 all of Euclid's theorems are as familiar and available to me as his first axioms, which is 
 far from true.’ (Galilei 1638/1952, p. 239)  
 
Happily, in an earlier part of H of C dealing with Greek mathematics, some geometrical rudiments 
are established. In particular, students see a proof of Thales’ theorem – an angle inscribed in a semi-
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circle is a right angle – using similar triangles. This allows the following demonstration of the law of 
chords: 

H
L

D

1

 
 

Figure 1: The law of chords 
 
Let a circle of diameter D have a chord of length L and height H inscribed as shown in Figure 1. Let 
the descent time along the chord be T. By similar triangles L/H = D/L, so that L2 /H = D. Then by 
(1), 
 

DkHkLT == /   (2) 
 
which is indeed constant. Q.E.D. 
 
The law of chords can also be demonstrated by deriving expressions for the velocities and descent 
time, and noting that the expression for descent time is independent of the upper point of the chord 
along the circular arc. The expression for descent time may be obtained by considering the 
component of the force of gravity along the inclined chord. Alternatively, Nahin (2004, pp. 202-206) 
derives the descent time by applying the principle of conservation of mechanical energy. Our brief 
geometrical derivation is rather close to the spirit of Galileo’s proof, and is accessible to students 
without a physics background. 
 
Lattery discusses an interesting approach suggested by Matthews in 1994 for leading students 
towards a derivation of the law of chords. Students are asked to consider the following thought 
experiment: 
   

‘Suppose a ball is released at some point A on the perimeter of a vertical circle and rolls 
down a ramp to point B, the lowest point on the circle …  The ramp may be rotated about 
point B.  For what angle will the time of descent along chord AB be the least? ’ 
(Lattery, 2001, p. 485) 

 
This way of posing the problem helps students to greater appreciate the surprising result. It also 
allows the option of discussing the distinction between sliding and rolling motion. H of C is a 
mathematics course and has no laboratory component. Nevertheless, (particularly for students with 
weak physical intuition) it is useful to be able to observe the results studied in various descent 
problems. As experimentalists know, however, the design and operation of physics demonstration 
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apparatus can be as much art as science. For this reason, we have chosen to use physically realistic 
computer simulations to illustrate various theorems. A computer program in MAPLE allows 
freedom in the choice of curves studied, as well as the possibility of speeding, slowing or freezing 
demonstrations. Figure 2 shows two screen snapshots from the program. Portability is one more 
advantage of this approach, to go along with flexibility of use. 
 

 
Figure 2: Screen snapshots from MAPLE race: cycloid vs. straight-line ramp 

 
Details of the simulation are closely related to Jakob Bernoulli’s solution of the brachistochrone 
problem, and are detailed in a later section. 
 
With his Proposition XXXVI, Galileo proved that the descent time from a point on the lower 
quadrant of a circle to the bottom is quicker along two consecutive chords than along a direct chord. 
He began his proof by a clever application of the law of chords, but then completed it by a fairly 
involved geometric argument. In H of C, the proof is completed using a shorter method proposed 
by Erlichson (1998), based on conservation of mechanical energy. 
 
Three Curves 
 
Three curves of major interest to the mathematicians of the seventeenth century were the cycloid, 
the isochrone and the brachistochrone. (See, for example, Eves, 1990, p. 426.) The definitions of 
these curves are kinematic; as students learn in H of C, the acceptance of curves defined via motion 
was part of a mathematical revolution in the seventeenth century. A cycloid is the curve traced by a 
point on the circumference of a circle as the circle rolls, without slipping, along a straight line. A 
brachistochrone from point A to point B is a curve along which a free-sliding particle will descend more 
quickly than on any other AB-curve. (It is thus an optimal shape for components of a slide or roller 
coaster, as we inform our students.) An isochrone is a curve along which a particle always has the same 
descent time, regardless of its starting point. A surprising discovery was that these three curves are 
one and the same! 
 
Galileo may have been the first to consider the problem of finding the path of quickest descent. 
This is suggested by the initial statement of his Scholium to Proposition XXXVI: 
 

 ‘From the preceding it is possible to infer that the path of quickest descent from one point 
to another is not the shortest path, namely, a straight line, but the arc of a circle’. 
(Galilei 1638/1952, p.234) 
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Many researchers, such as Stillman Drake and Herman Goldstine, have concluded that Galileo 
incorrectly claimed that a circular arc is the general curve of quickest descent (Erlichson 1998, 
Erlichson 1999). However, Erlichson (1998, p.344), argues that Galileo restricted himself to descent 
paths that used points along a circle. Galileo’s claim is based on an argument that the descent time 
for a particle along a twice-broken path is less than along a twice-broken path, and that the descent 
time along a multiply-broken path would be even less. According to Nahin (2004, pp. 208-209), 
Galileo’s claim is correct, but his reasoning was flawed; Erlichson (1998) noted that Galileo’s 
method of proving Proposition XXXVI holds for descent from rest, but fails to generalize to 
situations in which a particle is initially moving.  
 
In fact, as we have mentioned, the brachistochrone is not the circle; it is a segment of an inverted 
cycloid. The cycloid was discovered in the early sixteenth century by the mathematician Charles 
Bouvelles (Cooke, 1997, p. 331). In the 1590s, Galileo conjectured and empirically demonstrated 
that the area under one arch of the cycloid is approximately three times the area of the generating 
circle. That the area is exactly three times that of the generating circle was proven by Roberval in 
1634 and by Torricelli in 1644 (Boyer and Merzbach, 1991, p. 356). Roberval constructed the 
tangent to the cycloid in 1634 (Struik, 1969, p. 232). According to Cooke (1997, p. 331), 
constructions of the tangent to the cycloid were independently discovered circa 1638 by Descartes, 
Fermat and, and slightly later by Torricelli. In 1659, Christopher Wren also determined the length of 
a cycloidal arch, showing it to be exactly four times the diameter of the generating circle (Stillwell, 
2002, p. 318).    In 1659, Huygens discovered that the cycloid is a solution to the isochrone or 
tautochrone problem; he showed that a particle sliding on a cycloid will exhibit simple harmonic 
motion with period independent of the starting point (Stillwell, 2002, p. 238). Huygens published his 
discovery of the cycloidal pendulum in Horologium oscillatorium in 1673 (Boyer and Merzbach, 1991, p. 
379). The cycloidal pendulum also features in Newton’s Principia (Gauld, 2005). In 1696, Johann 
Bernoulli demonstrated that a brachistochrone is a cycloid (Erlichson, 1999).  

 
Most of these discoveries concerning the cycloid are inaccessible to students with no calculus 
background. Remarkably, Roberval’s historical construction (Struik, 1969, pp. 234-235) of a tangent 
to the cycloid is quite accessible to students, as it uses only the parallelogram law for vector addition. 
The result is presented in H of C: 
 

 
Figure 3. Finding a tangent to the cycloid 

 

The result can almost be presented “without words”. (See Figure 3.) Follow the path of the 
“tracing” point on the generating circle of a cycloid. The motion of this point at a given instant has a 
horizontal component, corresponding to the horizontal motion of the center of the circle; it also has 
a component normal to a radius of the circle, since the circle rolls. These components are of equal 
magnitude, since the circle rolls without slipping. The resultant of the motions is found by the 
parallelogram law, and is the tangent to the cycloid. 
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It was early in 1696 that Johann Bernoulli solved the problem of finding the curve of quickest 
descent; he showed that the brachistochrone was a cycloid.  Later, in June of that year, he posed the 
problem in the journal Acta Eruditorum  
  
 ‘ PROBLEMA NOVUM, ad cujus Solutione Mathematici invitantur.  

" Datis in plano verticali duobus punctis A et B, assignare mobili M viam AMB, per quam 
gravitate sua descendens, et moveri incipiens a puncto A, brevissimo tempore perveniat 
ad alterum punctum B."’ (Woodhouse 1810, pp.2 – 3) 

 
An English translation is as follows: 

 
‘If two points A and B are given in a vertical plane, to assign to a mobile particle M the path 
AMB along which, descending under its own weight, it passes from the point A to the point 
B in the briefest time.’ (Smith, D.E. 1929, p.644) 

     
The problem was also solved by Jakob Bernoulli, Leibniz, L’Hôpital and Newton.  Newton’s 
solution was published anonymously in the Philosophical Transactions of the Royal Society in January, 
1697. Solutions by Johann Bernoulli, Jakob Bernoulli, Leibniz and Newton were published in Acta 
Eruditorum in May, 1697.  According to Stillwell (2002, p. 239), the most profound was Jakob 
Bernoulli’s solution, which represented a key step in the development of the calculus of variations.  
The historical development of what became the calculus of variations is closely linked to certain 
minimization principles in physics, namely, the principle of  least distance, the principle of least 
time, and ultimately, the principle of least action. (See Kline, 1972, pp. 572-582.) To understand 
Johann Bernoulli’s solution of the brachistochrone problem, students in H of C are led through 
Fermat’s principle of least time: light always takes a path that minimizes travel time. 
 
Principle of Least Time 
 
An accessible application of the principle of least time is in deriving the law of reflection: if a ray of 
light strikes a mirror, then the angle of incidence equals the angle of reflection. This law was first 
noted by Euclid in the fourth century BCE (Ronchi, 1957, p. 11), and was explained using a 
principle of least distance by Heron of Alexandria in the first century CE (Cooke, 1997, p. 149). In 
the H of C course, the law of reflection is derived geometrically, as per Heron. Since the speed of 
light (in a fixed medium) is constant, this is equivalent to a derivation from the principle of least 
time. 
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Figure 4: Snell’s law of refraction 
 
 
The law of refraction states that when a ray of light crosses the boundary between transparent 
media, it experiences a change in direction characterized by the relation 
 

sin θ1 / sin θ2  =  k 
 
in which θ1 is the angle of incidence, θ2 is the angle of refraction and k is a constant dependent on 
the nature of the two media. (See Figure 4.)  This law was discovered experimentally by the Dutch 
physicist Willebrord Snel circa 1621; in English it is known as Snell’s law. Snel noticed that if the 
first medium is less dense than the second, then k > 1; that is, upon entering the second medium, 
the light ray bends toward the normal to the boundary. (Nahin, 2004, p. 103) 
 
In the mid-seventeenth century, Fermat demonstrated that Snell’s law of refraction may be derived 
from the principle of least time. In the H of C course, such a derivation is given using an 
abbreviation of the approach outlined by Nahin: Consider a ray of light crossing the boundary 
between transparent media. For i = 1, 2 let vi denote the speed of light in medium i.  Referring to 
Figure 5, let T denote the transit time for a light ray travelling from point A in medium 1, through 
point B at the boundary, to point C in medium 2. Then 
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To obtain the path of least time, it is necessary to determine x so that the transit time T is 
minimized. 
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The necessary condition for a minimum, namely that dT / dx   = 0, yields the requirement that 
 

sin θ1 / sin θ2  =  v1 / v2 
 
Thus, Snell’s media-dependent constant is k = v1 / v2. 

 

                              
Figure 5: Derivation of Snell’s law 
 

It should be noted that Fermat achieved the minimization using his method of adequality, which is 
comparable to differentiation; however, he had to introduce some approximations, since he could 
not apply his adequality method directly to expressions involving square roots. Nahin (2004, p. 127-
134) gives a detailed presentation of Fermat’s solution.  
 
Johann Bernoulli’s Solution to the Brachistochrone Problem 
 
In the brachistochrone problem, an ideal particle traverses an AB-curve under gravity. The traversal 
time will be determined if we can fix the speed of the particle at each point along its path. The 
principle of conservation of mechanical energy implies that if the particle starts at rest, and the 
vertical drop from A to a point is y, then the particle will acquire a speed at the given point of 
 

v = (2 g y)1/2       (3) 
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This speed is independent of whether the particle has dropped vertically, moved along an 
inclined line, or followed some more complicated path. The brachistochrone problem thus becomes 
the following: 

 
A particle moves from A to B in such a way that whenever its vertical drop from A is y, 

 its speed is given by (3). Find the AB-curve with the shortest traversal time. 
 
Johann Bernoulli solved the problem via a brilliant thought experiment. Consider a non-uniform 
optical medium which becomes increasingly less dense from top to bottom. If light enters from 
above, its speed becomes faster and faster as it moves down. By a judicious varying of the density, 
light may be constrained to travel through this medium in a manner satisfying (3). However, by the 
principle of least time, in any situation, light will always travel along a path with the shortest traversal 
time. We therefore see that if A is located at the top of this non-uniform medium, and B at the 
bottom, the path taken by light travelling from A to B is the brachistochrone! 
 
This leaves the question of how light will travel through our non-uniform medium. Consider a light 
ray travelling through two transparent media, from point A in medium 1 (upper) to point B in 
medium 2 (lower). Let θ1 denote the angle of incidence and θ2 the angle of refraction.  Let v1 and v2 
denote the speed of light in the respective media. Suppose that medium 2 is less dense than medium 
1, so that v2 > v1. Then, since 
 

sin θ1 / sin θ2  =  v1 / v2  <  1 
 
θ2 > θ1, and the light ray bends away from the normal to the boundary. (See Figure 4.) Note, also, 
that 
  

sin θ1 / v1  =   sin θ2 / v2  =  constant 
 
Now, consider a similar situation with a light ray traveling downward through many layered 
transparent media, with each medium less dense than the layer above it. The speed of light increases 
in the successive media as it progresses through deeper layers and the ray of light bends further away 
from each successive normal to the boundary at point of contact. (See Figure 6.) 
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Figure 6: Refraction through multiple layers 

Note also, that: 

sin θ1 / v1  =   sin θ2 / v2  =  sin θ3 / v3  =  …  =  constant 

                
Figure 7: Johann Bernoulli’s proof 
 
Letting the number of layers increase without bound and the thickness of each layer decrease 
towards zero, the path of the light ray becomes a smooth curve. (See Figure 7.) At each point along 
the curve 
 

sin θ / v = c             (4) 
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Bernoulli thus realized that a particle falling along the curve of quickest descent from A to B must 
satisfy both equations (3) and (4).  From the triangle in Figure 7 
 

sin θ  =  cos φ  = 1 / sec φ   =  1 / [ 1 + tan2φ ]1/2  =  1 / [1 + (dy/dx)2]1/2 
 
Thus 
  

sin θ / v  =  constant  =  1 / (v [1 + (dy / dx)2]1/2) 
 
where v  =  (2 g y)1/2

. This yields the following nonlinear differential equation: 
  

y [ 1 +  (dy / dx)2 ]  =  k                                                       (5) 
 
where k is some constant. Algebraic manipulation of the differential quantities, dx and dy, yields the 
equation 
 

dx  =  dy [ y / (k − y) ]1/2      (6) 
 
which Bernoulli recognized as a differential equation describing a cycloid. In the translated words of 
Johann Bernoulli: 
  

‘from which I conclude that the Brachystochrone is the ordinary Cycloid’ 
(Struik 1969, p .394 translation of Johann Bernoulli 1697) 

 
Note that in Bernoulli’s May 1697 paper in Acta Eruditorum, the usual labelling of x and y coordinates 
is reversed. Equation (6) may be further manipulated to obtain parametric equations for x and y; for 
details, see the excellent accounts by Simmons (1972), Erlichson (1999) and Nahin (2004). 
 

Jakob Bernoulli’s Solution to the Brachistochrone Problem 
 
Although Johann Bernoulli’s solution to the brachistochrone problem impresses us with its elegance, 
it is tailored to a very specific application. Jakob Bernoulli’s more methodical approach generalizes, 
and in fact became the basis of the calculus of variations. In fact, neither of the Bernoullis’ solutions 
uses calculus explicitly in the foreground. Each of the brothers, by a different method, sets up a 
differential equation, and having found this equation, declares the problem solved. (Struik, 1969, pp. 
392-399). Their quickness at this early date to recognize a differential equation of the cycloid is 
striking! 
 
Since the calculus is in the background, Jakob Bernoulli’s solution to the cycloid may be outlined to 
H of C students. We give our abbreviated presentation of his proof below. It relies on the use of 
similar triangles, some (typical) hand-waving regarding infinitesimals, and the concept of stationary 
points of functions. 
     
A stationary point of a function is one at which the function’s rate of change is zero. In the ordinary 
calculus, we recognize that local extrema of a function occur at stationary points. Jakob Bernoulli 
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extended this idea to the brachistochrone problem. Since the brachistochrone minimizes descent 
time, the rate of change of descent time must be zero with respect to infinitesimal variation of the 
brachistochrone path. Consider Figure 8. 
          
 
 

 
 
Figure 8: Jakob Bernoulli’s solution of the brachistochrone problem 
 
Let curve OCGD be a small section of the brachistochrone. Letting y measure vertical drop from O, 
choose units so that a particle moves along the curve with instantaneous speed y  at any point. We 

consider CG to be so short that a particle moves along CG with constant speed || HC  where 

|HC| denotes the length of HC. Similarly, we assume a constant speed || HE  on GD. 
 
Vary the path by moving G an infinitesimal distance horizontally, to L. As the brachistochrone is 
stationary, the descent time along OCLD  must also be minimal. Add construction lines ML and NG 
such that triangles ∆CML and  ∆DNG  are isosceles. The descent times along CM and CL are thus 
equal, as are descent times along GD and ND. As the total descent times along OCGD and OCLD 
are to be equal, the descent time along MG must equal that along LN, and 
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||/||||/|| HELNHCMG = .    (7) 
 
As we are dealing with infinitesimal distances, we may consider ML to be an arc of a circle centered 
at C, and LMG to be a right angle. By similar triangles, then, |MG| / |LG| = |EG| / |CG|. If we 
let x measure horizontal distance, and s arc length along the brachistochrone, this can be rewritten as  
 
 |MG| / |LG| = dx / ds on segment CG. 
 
By an analogous argument,  
 

|LN| / |LG| = dx / ds on segment GD. 
  
Dividing by y  on each of segments CG and GD, and applying equation (7), we find that 
  

 kdsydx =/      (8) 

 
with the same constant k on both segment CG and segment GD. We conclude that equation 
(8) holds everywhere on the brachistochrone. Jakob Bernoulli recognized this as a differential 
equation of the cycloid. 
 
Note that various mysteries involving infinitesimals take place; segment CG is only short, while LG 
is infinitesimal. Also, isosceles triangle ∆CML contains two right angles, and this is essential to the 
argument with similar triangles. Again, Bernoulli interchanged x and y, which can be confusing to a 
modern reader. 
 
Computerized Demonstration of the Brachistochrone 
 
It may be difficult for students to grasp the nature of the minimization problem involved in finding 
the brachistochrone. We are not finding the tangent or area of some particular given curve, as is 
usually the case in calculus. Instead, we must search among all possible hypothetical curves to find that 
which allows least time descent. The nature of the problem also precludes physical demonstration; 
we may build an apparatus to demonstrate sliding descent on a particular curve, or we may “race” 
physical beads on two or three particular curves; however, it is hard to conceive how one would 
physically demonstrate beads descending on enough curves to allow students to conceptualize 
descent on an arbitrary curve. Here the computer comes to the rescue: 
 
Using the symbolic programming language MAPLE, we simulate the descent under gravity of a 
particle along a curve as follows: 

1. Curves are given parametrically: x = x(s), y = y(s), a ≤ s ≤ b. 
2. A given curve is systematically sampled at n + 1 points si = a +i (b – a)/n, i = 0, 1, …, n .  
3. The curve is modeled by straight-line segments, from (xi , yi ) to (xi+1 , yi+1),  

i = 0, 1, …, n – 1. 
4. The motion of a particle under gravity down the digitized curve is modeled in a straight-

forward way: If the particle enters the straight-line segment from (xi , yi ) to (xi+1 , yi+1) 
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moving at speed v0, its acceleration under gravity will be a = g sin θ, where g is the 
acceleration (downward) due to gravity, and sin θ = 2

1
2

11 )(  )(/)( +++ −+−− iiiiii yyxxyy . 

The length of the segment is 2
1

2
1 )(  )( ++ −+−= iiii yyxxD . At time t after entering the 

segment, the particle has moved distance d = v0t + ½ at2 along the segment. The time T 
spent traversing the segment is then the solution of D = v0T + ½ aT2, so that the particle 
enters the next segment with a speed of v0 + aT. 

5. The positions of particles on several digitized curves can thus be worked out as parametric 
functions of time. The MAPLE command animate() is then capable of presenting trajectories 
of two or more of these particles simultaneously, as they each move along their underlying 
curves. Our code as currently implemented contrasts the motion of particles along two 
desired curves. 

 
We have found that n = 11 already gives very smooth-looking approximations. Using our software, 
we “race”, for example, a particle on a cycloid arc against a particle on a straight-line ramp (see 
Figure 2), or a particle on a circular arc. We can in fact race along any (parametric) curve suggested 
by students. The same software will illustrate Galileo’s law of chords. After students have seen 
Johann Bernoulli’s solution to the brachistochrone, they can appreciate the analogy between modern 
“digitization” and Bernoulli’s layers. 
 
Conclusion 
 
We have traced the thread of quickest descent problems and the brachistochrone from Galileo, 
through Fermat and Roberval, to the Bernoullis and the dawn of the calculus of variations. We have 
spelled out in detail a selection of mathematical results which we have presented to our H of C 
students. These results include mathematical content ranging in difficulty from geometry, through 
vectors, to differential equations. A themed unit on the cycloid shows students at very different 
levels the strong interplay between mathematics and physics: Geometry informs optics (Fermat), 
optics informs kinematics (Johann Bernoulli), and kinematics informs geometry (Roberval).  
 
Of particular interest is Johann Bernoulli’s beautiful Gedankenexperiment, whereby a falling particle 
becomes a ray of light, moving through media arranged without regard for the possibility of actual 
physical construction. Again, the purely mathematical and hypothetical nature of the frictionless 
bead in the brachistochrone problem motivates our software demonstrations to students. The digital 
sampling of curves in our MAPLE code echoes the (finite) layering of media by Johann Bernoulli. A 
careful examination of the arguments of the Bernoullis introduces students to the interesting 
philosophical and technical issues related to infinitesimals/differentials in mathematics and physics. 
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