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Abstract

Purpose - The purpose of this paper is to present near set theory using the perceptual
indiscernibility and tolerance relations, to demonstrate the practical application of near
set theory to the image correspondence problem, and to compare this method with ex-

isting image similarity measures.
Design/Methodology/Approach - Image correspondence methodologies are present
in many systems that we depend on daily. In these systems, the discovery of sets of sim-

ilar objects (aka, tolerance classes) stems from human perception of the objects being
classified. This view of perception of image correspondence springs directly from J.H.
Poincaré’s work on visual spaces during the 1890s and E.C. Zeeman’s work on tolerance
spaces and visual acuity during 1960s. Thus, in solving the image correspondence prob-

lem, it is important to have systems that accurately model human perception. Near set
theory provides a framework for measuring the similarity of digital images (and percep-
tual objects, in general) based on features that describe them in much the same way

that humans perceive objects.
Findings - The contribution of this article is a perception-based classification of images
using near sets.
Originality/value - The method presented in this paper represents a new approach to

solving problems in which the goal is to match human perceptual groupings. While the
results presented in the paper are based on measuring the resemblance between images,
the approach presented in this article can be applied to any application that can be

formulated in terms of sets such that the objects in the sets can be described by feature
vectors.

Keywords: Feature values; Hausdorff distance; image correspondence; perceptual tol-

erance relation; near sets; perception; probe function; similarity.
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1. Introduction

The problem addressed in this article is one of reconciling human perception with

that of image processing and image correspondence systems. The term perception

appears in the literature in many different places with respect to the processing of

images. For instance, the term is often used for demonstrating that the performance

of methods are similar to results obtained by human subjects (as in [Montag and

Fairchild (1997)]), or it is used when the system is trained from data generated by

human subjects (as in [El-Naqa et al. (2004)]). Thus, in these examples, a system

is considered perceptual if it mimics human behaviour. Another illustration of the

use of perception is in the area of semantics with respect to queries [Rahman et al.

(2007); Martinez et al. (2005)]. For instance, [Martinez et al. (2005)] focuses on

queries for 3-D environments, i.e., performing searches of an online virtual envi-

ronment. Here the question of perception is one of semantics and conceptualization

with regard to language and queries. For example, a user might want to search for

the tall tree they remembered seeing on one of their visits to a virtual city.

Other interpretations of perception are tightly coupled to psychophysics intro-

duced in 1860 in [Fechner (1966, 1860)], i.e., perception based on the relationship

between stimuli and sensation. For example, [Papathomas et al. (1997)] introduces

a texture perception model. The texture perception model uses the antagonistic

view of the Human Visual System (HVS) in which our brain processes differences

in signals received from rods and cones rather than sense signals, directly. An image-

feature model of perception has been suggested by Mojsilovic et al. [2002], where

it is suggested that humans view/recall an image by its dominant colours only, and

areas containing small, non-dominant colours are averaged by the HVS. Other ex-

amples of the term perception defined in the context of psychophysics have also

been given [Balakrishnan et al. (2005); Qamra et al. (2005); Wang et al. (2004);

Dempere-Marco et al. (2002); Kuo and Johnson (2002); Wandell et al. (2002); Wil-

son et al. (1997)].

Perception as explained by psychologists [Hoogs et al. (2003); Bourbakis (2002)]

is similar to the understanding of perception in psychophysics. In a psychologist’s

view of perception, the focus is more on the mental processes involved rather than

interpreting external stimuli. For example, [Bourbakis (2002)] presents an algorithm

for detecting the differences between two images based on the representation of the

image in the human mind (e.g., colours, shapes, and sizes of regions and objects)

rather than on interpreting the stimuli produced when looking at an image. In other

words, the stimuli from two images have been perceived and the mind must now

determine the degree of similarity.

The view of perception presented in this article combines the basic understand-

ing of perception in psychophysics with a view of perception found in Merleau-

Ponty’s work [1945]. That is, perception of an object (i.e., in effect, our knowledge

about an object) depends on information gathered by our senses. Perception of

objects is identified with our ability to describe what we perceive. In other words,
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object perception is synonymous with object description. The proposed approach to

perception is feature-based and is similar to the one discussed in the introduction of

[Calitoiu et al. (2007)]. In this view, our senses are likened to probe functions (i.e.,

mappings of sensations to values assimilated by the mind). A human sense modelled

as a probe measures the physical characteristics of objects in our environment. The

sensed physical characteristics of an object are identified with object features.

It is our mind that identifies relationships between object feature values to form

perceptions of sensed objects [Merleau-Ponty (1945)]. In this article, we show that

perception, i.e. human perception, can be quantified through the use of near sets by

providing a framework for comparing objects based on object descriptions. Objects

that have similar appearance (i.e., objects with similar descriptions) are consid-

ered perceptually near each other. Sets are considered near each other when they

have “things” (perceived objects) in common. Specifically, near sets facilitate mea-

surement of similarity between objects based on feature values (obtained by probe

functions) that describe the objects. This approach is similar to the way human

perceive objects (see, e.g, [Fahle and Poggio (2002)]) and as such facilitates pattern

classification systems.

Much work has been reported in the area of near sets [Peters (2007a,b); Peters

et al. (2007a); Henry and Peters (2009a); Peters and Wasilewski (2009); Pal and

Peters (2010)], which are an outgrowth of the rough set approach to obtaining ap-

proximate knowledge of objects that are known imprecisely [Pawlak (1981, 1982);

Pawlak and Skowron (2007c,b,a)]. In particular, this article presents a practical

application of near set theory to the image correspondence problem and Content-

Based Image Retrieval (CBIR). The growth of CBIR in the early 90’s as a research

area can be attributed to increased access to capturing and storing digital images,

as well as the advent of the internet as a way to share images [Smeulders et al.

(2000)]. Since then CBIR has become a major research area with applications rang-

ing to common everyday use, such as searching a database of personal images, to

specialized content-based medical image retrieval systems [Guldogan (2008)]. CBIR

systems consist of two major components, namely, similarity measures for assessing

the similarity of images, and indexing to perform fast comparison and retrieval of

images from a database. The problem presented in this article is an introduction

to a similarity measure based on near set theory. Particularly, a Nearness Measure

(NM) for quantifying the similarity of near sets is used to perform Content-Based

Image Retrieval (CBIR), and the results are compared using a traditional Haus-

dorff distance [Hausdorff (1914, 1962)] as well as Perceptually Modified Hausdorff

Distance (PMHD) [Park et al. (2008)].

This article is organized as follows: Section 2 gives a brief introduction to near

sets with an emphasis on indiscernibility and tolerance relations. Section 3 outlines

the steps for combining near set theory with image processing for use in image

retrieval. A perceptual tolerance relation useful in discerning resemblances between

images is given in Section 2.1. An overview of near sets and image correspondence
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is given in Section 3. A brief introduction to perceptual image processing is given

in Section 3.1, followed by examples of near images in Section 3.2. Then Section 4

provides an overview of the original Hausdorff distance measure along with the more

recent perceptually modified Hausdorff measure. Both forms of Hausdorff measures

provide a basis for a thorough comparison with a perceptual nearness measure

considered in the context of tolerance spaces. Section 5 presents a comparison of

results using using near sets and both forms Hausdorff distance for content-based

image retrieval (CBIR). The work presented in this article is a continuation of

recent applications of near set theory reported in [Henry and Peters (2007, 2008);

Hassanien et al. (2009); Peters et al. (2007b); Peters and Ramanna (2007); Meghdadi

et al. (2009); Peters and Puzio (2009); Ramanna (2010); Pal and Peters (2010)],

and the contribution of this work is a step toward perception-based image retrieval.

2. Near Sets

Near sets are disjoint sets that resemble each other [Henry and Peters (2009b)].

Resemblance between disjoint sets occurs whenever there are observable similarities

between the objects in the sets. Similarity is determined by comparing lists of

object feature values. Each list of feature values defines an object’s description.

Comparison of object descriptions provides a basis for determining the extent that

disjoint sets resemble each other. Objects that are perceived as similar based on

their descriptions are grouped together. These groups of similar objects can provide

information and reveal patterns about objects of interest in the disjoint sets.

Near set theory focuses on sets of perceptual objects with similar descriptions.

Specifically, let O represent a set of perceptual objects (i.e. objects that have their

origin in the physical world), and let B denote a set of real-valued functions, called

probe functions, representing object features, and let φi ∈ B, φi : O → R. The

description of an object x ∈ O is a vector given by

φB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the description and each φi(x) is a probe function repre-

senting a feature value of x. Furthermore, we can define a set F (such that B ⊆ F)

representing all the probe functions used to describe an object x. Next, a percep-

tual information system S can be defined as S =
〈

O, F, {V alφi
}φi∈F

〉

, where F is

the set of all possible probe functions that take as the domain objects in O, and

{V alφi
}φi∈F is the value range of a function φi ∈ F. For simplicity, a perceptual

system is abbreviated as
〈

O, F
〉

when the range of the probe functions is under-

stood. It is the notion of a perceptual system that is at the heart of the following

definitions.

Definition 1. Normative Indiscernibility Relation [Peters (2007c)] Let
〈

O, F
〉

be a perceptual system. For every B ⊆ F the normative indiscernibility rela-

tion ∼B is defined as follows:

∼B= {(x, y) ∈ O × O : ‖ φB(x) − φB(y) ‖
2
= 0},
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where ‖·‖
2

represents the l2 norm. If B = {φ} for some φ ∈ F, instead of ∼{φ} we

write ∼φ.

Defn. 1 is a refinement of the original indiscernibility relation given by Pawlak

[1981]. Using the indiscernibility relation, objects with matching descriptions can

be grouped together forming granules of highest object resolution determined by the

probe functions in B. This gives rise to an elementary set (also called an equivalence

class)

x/∼B
= {x′ ∈ X | x′ ∼B x}, (1)

defined as a set where all objects have the same description. Similarly, a quotient

set is the set of all elementary sets defined as

O/∼B
= {x/∼B

| x ∈ O}.

Defn. 1 provides the framework for comparisons of sets of objects by introducing

a concept of nearness within a perceptual system. Sets can be considered near each

other when they have “things” in common. In the context of near sets, the “things”

can be quantified by granules of a perceptual system, i.e., the elementary sets. The

simplest example of nearness between sets sharing “things” in common is the case

when two sets have indiscernible elements. This idea leads to the definition of a

weak nearness relation.

Definition 2. Weak Nearness Relation [Henry and Peters (2008)]

Let 〈O, F〉 be a perceptual system and let X,Y ⊆ O. A set X is weakly near to a set

Y within the perceptual system 〈O, F〉 (X./
F
Y ) iff there are x ∈ X and y ∈ Y and

there is B ⊆ F such that x ∼B y. In the case where sets X,Y are defined within the

context of a perceptual system as in Defn 2, then X,Y are weakly near each other.

An example of Defn. 2 is given in Fig. 1 where the straight lines represent equivalence

classes. The sets X and Y are weakly near each other in Fig. 1 because they both

share objects belonging to the same equivalence class.

Fig. 1. Example of Defn. 2.

O/∼B

X

Y
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Defn. 2 can be used to define a Nearness Measure (NM) [Hassanien et al. (2009)].

Let X and Y be two weekly near (using Defn. 2) disjoint sets, and let Z = X ∪ Y .

Then, a NM between X and Y is given by

tNM∼=B
(X,Y ) =

1

|Z/∼B
|
·

∑

C∈Z/∼B

|C|
min(|C ∩ X|, |[C ∩ Y |)

max(|C ∩ X|, |C ∩ Y |)
. (2)

The idea behind Eq. 2 is that sets that are similar should have similar number of

objects in each equivalence class. Thus, for each equivalence class obtained from

Z = X ∪ Y , Eq. 2 counts the number of objects that belong to X and Y and takes

the ratio (as a proper fraction) of their cardinalities. Furthermore, each ratio is

weighted by the total size of the equivalence class (thus giving importance to the

larger classes) and the final result is normalized by dividing by the sum of all the

cardinalities. The range of Eq. 2 is in the interval [0,1], where a value of 1 is obtained

if the sets are equivalent and a value of 0 is obtained if they have no elements in

common.

As an example of the degree of nearness between two sets, consider Fig. 2 in

which each image consists of two sets of objects, X and Y . Each colour in the

figures corresponds to an elementary set where all the objects in the class share the

same description. The idea behind Eq. 2 is that the nearness of sets in a perceptual

system is based on the cardinality of equivalence classes that they share. Thus, the

sets in Fig. 2(a) are closer (more near) to each other in terms of their descriptions

than the sets in Fig. 2(b).

(a) (b)

Fig. 2. Example of degree of nearness between two sets: (a) High degree of nearness, and (b) low
degree of nearness.

2.1. Perceptual Tolerance Relation

A perception-based approach to discovering resemblances between images leads to

a tolerance class form of near sets that models human perception in a physical
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continuum viewed in the context of image tolerance spaces. A tolerance space-based

approach to perceiving image resemblances hearkens back to the observation about

perception made by Ewa Or lowska [1982] (see, also, [Or lowska (1985)]), i.e., classes

defined in an approximation space serve as a formal counterpart of perception.

The term tolerance space was coined by E.C. Zeeman [1962], elaborated

in[Zeeman and Buneman (1968)], in modelling visual perception with tolerances.

A tolerance space is a set X supplied with a binary relation ∼= (i.e., a subset
∼= ⊂ X × X) that is reflexive (for all x ∈ X, x ∼= x) and symmetric (i.e., for all

x, y ∈ X, x ∼= y implies y ∼= x) but transitivity of ∼= is not required. The basic idea

is to find objects that resemble each other with a tolerable level of error. Sossin-

sky [1986] observes that main idea underlying tolerance theory comes from J.H.

Poincaré, who introduced representative spaces (aka, tolerances spaces) [Poincaré

(1895)],elaborated in [Poincaré (1902); Poincaré (1913)]. Physical continua (e.g.,

measurable magnitudes in the physical world of medical imaging [Hassanien et al.

(2009)]) are contrasted with the mathematical continua (real numbers) where al-

most solutions are common and a given equation has no exact solutions. An almost

solution of an equation (or a system of equations) is an object which, when sub-

stituted into the equation, transforms it into a numerical ‘almost identity’, i.e., a

relation between numbers which is true only approximately (within a prescribed

tolerance) [Sossinsky (1986)]. Equality in the physical world is meaningless, since

it can never be verified either in practise or in theory. Hence, the basic idea in a

tolerance space view of the world, for example, is to replace the indiscernibility rela-

tion in rough sets [Pawlak (1982)] with a tolerance relation in partitioning sets into

homologous regions where there is a high likelihood of overlaps, i.e., non-empty

intersections between tolerance classes. The use of tolerance spaces in this work

is directly related to recent work on tolerance spaces (see, e.g., [Hassanien et al.

(2009); Peters (2009a,b, 2010); Peters and Ramanna (2009); Gerasin et al. (2008);

Zheng et al. (2005); Bartol et al. (2004); Skowron and Stepaniuk (1996); Schroeder

and Wright (1992); Shreider (1970); Pal and Peters (2010)]).

When dealing with perceptual objects (especially, components in images), it is

sometimes necessary to relax the equivalence condition of Defn. 1 to facilitate ob-

servation of associations in a perceptual system. This variation is called a tolerance

relation that defines yet another form of near sets [Peters and Ramanna (2009);

Peters (2009a,b)] and is given in Defn. 3.

Definition 3. Perceptual Tolerance Relation [Peters and Ramanna (2009)]

Let 〈O, F〉 be a perceptual system and let ε ∈ R. For every B ⊆ F a reflexive and

symmetric tolerance relation is defined as follows:

∼=B,ε= {(x, y) ∈ O × O : ‖ φB(x) − φB(y) ‖
2
≤ ε}.

If B = {φ} for some φ ∈ F, instead of ∼={φ} we write ∼=φ. Further, for notational

convenience, we will write ∼=B instead of ∼=B,ε with the understanding that ε is

inherent to the definition of the tolerance relation.
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A set X ⊆ O is a pre-class when x ∼=B y for any pair x, y ∈ X [Schroeder and Wright

(1992)]. A maximal pre-class with respect to inclusion is called a tolerance class.

A maximal pre-class is the akin to the concept of an elementary set when using

the tolerance relation instead of the indiscernibility relation, and the set Hε
B(O)

denoting the family of all tolerance classes of relation ∼=B on O is similar to a

quotient set. However, Hε
B(O) is a covering of O rather than the partition of O

given by O/∼B
. Finally, notice that the tolerance relation is a generalization of the

indiscernibility relation given in Defn. 1 (obtained by setting ε = 0). As a result,

Defn. 2 and Eq. 2 can be redefined with respect to the tolerance relationa.

The following simple example highlights the need for a tolerance relation as well

as demonstrates the construction of tolerance classes from real data. Consider the

20 objects in Table 1 that where |φ(xi)| = 1. Letting ε = 0.1 gives the following

tolerance classes:

X/∼=B
= {{x1, x8, x10, x11}, {x1, x9, x10, x11, x14},

{x2, x7, x18, x19},

{x3, x12, x17},

{x4, x13, x20}, {x4, x18},

{x5, x6, x15, x16}, {x5, x6, x15, x20},

{x6, x13, x20}}

Observe that each object in a tolerance class satisfies the condition ‖ φ(x)−φ(y) ‖≤

ε, and that almost all of the objects appear in more than one class. Moreover, there

would be twenty classes if the indiscernibility relation was used since there are no

two objects with matching descriptions.

Table 1. Tolerance Class Example.

xi φ(x) xi φ(x) xi φ(x) xi φ(x)

x1 .4518 x6 .6943 x11 .4002 x16 .6079
x2 .9166 x7 .9246 x12 .1910 x17 .1869

x3 .1398 x8 .3537 x13 .7476 x18 .8489
x4 .7972 x9 .4722 x14 .4990 x19 .9170
x5 .6281 x10 .4523 x15 .6289 x20 .7143

3. Near Sets and Image Correspondence

Near set theory can be used to determine the nearness between two images. The

following sections describe an approach for applying near set theory to images and

then demonstrates it uses at measuring the similarity between images.

aThe two relations were treated separately in the interest of clarity.



May 21, 2010 14:18 Emerald/INSTRUCTION FILE IJICC09-0702

Perception Based Image Classification 9

3.1. Perceptual Image Processing

Near set theory can be easily applied to images. For example, define a RGB image as

f = {p1,p2, . . . ,pT }, where pi = (c, r, R,G,B)T, c ∈ [1,M ], r ∈ [1, N ], R,G,B ∈

[0, 255], and M,N respectively denote the width and height of the image and M ×

N = T . Further, define a square subimage as fi ⊂ f with the following conditions:

f1 ∩ f2 . . . ∩ fs = ∅,

f1 ∪ f2 . . . ∪ fs = f, (3)

where s is the number of subimages in f . The approach taken in this paper is

to restrict all subimages to be square except when doing so violates Eq. 3. For

example, the images in the Berkeley Segmentation Dataset [Martin et al. (2001)]

often have the dimension 321 × 481. Consequently, a square subimage size of 25

will produce 6240 square subimages, 96 subimages of size 1 × 5, 64 subimages of

size 5 × 1 and 1 subimage consisting of a single pixel. Next, O can be defined as

the set of all subimages, i.e., O = {f1, . . . , fs}, and F is a set of functions that

operate on images (see, e.g. [Henry and Peters (2009c); Marti et al. (2001)] for

examples of probe functions). Once the set B has been selected, the elementary sets

or tolerance classes are simply created based on the feature vector associated with

each subimage.

3.2. Example of near images

The nearness of two images can be discovered by partitioning each one into subim-

ages and letting these represent objects in a perceptual system, i.e, let the sets

X and Y represent the two images to be compared where each set consists of the

subimages obtained by partitioning each image. Then, the set of all objects in the

perceptual system is given by Z = X ∪ Y . Objects in this system can be described

by probe functions that operate on images. Simple examples include average colour,

or maximum intensity (see, e.g., [Henry and Peters (2009c); Marti et al. (2001)] for

other examples of image probe functions).

An example of near images is given in Fig. 3 where Fig. 3(a) is being compared

first to itself and then to Fig.’s 3(b)-3(e). Each image is a Bitmap of size 200× 200,

each coloured square has dimensions 100 × 100, and the size of each subimage

is 10 × 10. The NMs were calculated using the average greyscale, denoted B =

{φavg(fs)}, for both the indiscernibility relation (Defn. 1) and the tolerance relation

(Defn. 3) where ε = 0.2b. First, consider the results of the NM using Defn. 1. Since

classes are formed with objects having matching descriptions, the results of the

NM can be deduced intuitively. For example, Fig.’s 3(a) & 3(b) differ only by the

lower left square. Thus, 75% of the objects in Z = X ∪ Y will have matching

bNote, the result of all probe function values are normalized to the interval [0, 1], thus, in this
case, selecting ε = 0.2 is equivalent to finding all objects whose greyscale value is within 51 (20%

of 255) of each other.
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descriptions. Conversly, determining the results of the NM using Defn. 3 is not

quite as easy. Selecting an epsilon of 0.2 creates a tolerance class consiting of all

subimages located in the top half of Fig. 3(a), i.e., the greyvalues of the top two

squares differ by less than 51 (20% of 255). Using this informatin along with the

data given in Table 2, the tolerance NM between Fig.’s 3(a) & 3(b) is calculated as

NM∼=B
=

1

800

(

1 · 400 + 1 · 200

)

= 0.75,

and the NM between Fig.’s 3(a) & 3(c) is calculated as

NM∼=B
=

1

800

(

0.5 · 300 + 1 · 200

)

= 0.4375.

Notice that the NM is lower using the tolerance relation when comparing

Fig.’s 3(a) & 3(c). This is easiest explained by observing that selecting ε = 0.2

and comparing Fig.’s 3(a) & 3(c) using the tolerance relation produces the same

result as comparing Fig. 4 to Fig. 3(c) using the indiscernibility relation. Observe

that both sets of images share the fact that their lefts sides are different, however,

Fig.’s 4 & 3(c) are more dissimilar due to the lack of representation of the top half

of Fig. 4 in Fig. 3(c). In other words, more information is lost by colouring the left

side of Fig. 4 black than by colouring the left side of Fig. 3(a) because of the added

loss of the information contained in the top half of Fig. 4 (a fact that is reflected in

the NMs).

(a) (b) (c)

(d) (e)

Fig. 3. Example of NM comparing first image to the remaining four: (a) Test pattern for comparison
(note, NM∼B

= NM∼=B
= 1 when compared to itself), (b) NM∼B

= NM∼=B
= 0.75, (c) NM∼B

=
0.5, NM∼=B

= 0.4375, (d) NM∼B
= NM∼=B

= 0.25, and (e) NM∼B
= NM∼=B

= 0..
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Table 2. NM∼=B
Calculation Example.

Images Tolerance Class (TC) TC Size Object in X Objects in Y TC Ratio

400 200 200 1

100 100 0 0

100 0 100 0

200 100 100 1

300 200 100 0.5

100 100 0 0

200 0 200 0

200 100 100 1

Fig. 4. Example showing similarity between NM∼B
and NM∼=B

: Comparing Fig.’s 3(a) & 3(c)

using a tolerance relation and ε = 0.2 is equivalent to comparing this figure with Fig. 3(c) using
the indiscernibility relation.

Next is another example providing a visual representation of both equivalence

and tolerance classes. Fig. 5 consists of images from the Berkeley Segmentation

Dataset [Martin et al. (2001)] and the Leaves Dataset [Weber (1999)], and Fig. 6 con-

sists of images depicting the equivalence and tolerance classes created from Fig 5(a).

Fig. 6(a) is a visual representation of the elementary sets (see, e.g., Eq. 1) obtained

using B = {φavg(fs)}, and created by the NEAR system (see [Henry and Peters

(2009c)]). In other words, each grey level shown in the image is a label assigned

to a particular elementary set, and the image is a visualization of the set of labels

assigned to the objects (small pixel windows of size 5 × 5) obtained from Fig. 5.

Notice, that objects from a given elementary set are not necessarily restricted to

the same location within the image due to the creation of elementary sets based on

object features (i.e., the covering occurs in a feature space).

Next, Fig.’s 6(b)-6(d) provide visualizations of tolerance classes created from

Fig. 5. Recall that the tolerance relation induces a covering of the objects instead of

a partition (i.e. a single subimage can belong to more than one class). As a result,

Fig.’s 6(b)-6(d) show the number of classes each subimage belongs to instead of

the tolerance classes themselves. Fig. 6(b) uses greyscale values to represent the

number of classes a subimage belongs to, where the grey levels white and black
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correspond to an object belonging to 255 and 0 classes respectively. The tolerance

classes in these images were created using ε = 0.1, a window size of 10 pixels, and

B = {φavg(fs)}. Notice, that the white (background) subimages belong to more

tolerance classes than the green (leaf) subimages because the area of the leaf is

much smaller than the background, i.e., each white subimage has more opportunity

to be part of a tolerance class.

Finally, Fig. 7 is a plot of NM values comparing the nearness of Fig.’s 5(a) & 5(b)

and Fig.’s 5(a) & 5(c) using the normalized green value from the RGB colour

model and Pal’s entropy, respectively denoted B = {φNormG(fs), φHPal
(fs)} (see

[Henry and Peters (2009c,d)]). Furthermore, the results were obtained using ε =

0, 0.01, 0.05, 0.1 (note, the indiscernibility relation is used for ε = 0), and a subimage

size of 10×10. Observe that the two leaf images produce higher NMs than Fig. 5(a)

and the Berkeley image because the leaf images produce objects that have more

in common in terms of their descriptions (using the probe functions in B). These

results match our perception of the similarity between these three images. Lastly,

note that the values using the indiscernibility relation are quite similar (near zero).

In practise features values tend not to be exactly equal thus producing lower NMs.

As shown by the results, this problem can be overcome by using the tolerance

relation.

(a) (b)

(c)

Fig. 5. Samples from image databases: (a), (b) Leaves Dataset [Weber (1999)], and (c) Berkeley
Segmentation Dataset [Martin et al. (2001).]
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Fig. 6. Examples showing visualization of equivalence and tolerance classes obtained from image
Fig 5(a): (a) Equivalence classes created using B = {φavg(fs)}, (b) image showing tolerance
class membership (dark regions correspond to low membership), (c) 3D plot of (b), and (d) plot
demonstrating that the membership of objects belonging to the leaf is not zero (as appears to be

the case in (b) and (c)).

4. Hausdorff Distance and Image Correspondence

The Hausdorff distance is used to measure the distance between sets in a metric

space [Hausdorff (1914)] (see [Hausdorff (1962)] for English translation), and has

been traditionally used in CBIR (see, e.g. [Smeulders et al. (2000); Park et al.

(2008)]). The Hausdorff distance is defined as

dH(X,Y ) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) },

where sup and inf refer to the supremum and infimum, and d(x, y) is the distance

metric (in this case it is the l2 norm). The Hausdorff distance is a natural choice

for comparison with the NM, since it is a measure of the distance between sets.

The method of applying the Hausdorff distance to the image correspondence

problem is the same as that described in Section 3. To reiterate, consider Fig. 8

where each rectangle represents a set of subimages (obtained by partitioning the
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Fig. 7. Plot showing NM values comparing Fig.’s 5(a) & 5(b) and Fig.’s 5(a) & 5(c) for ε =
0, 0.01, 0.05, 0.1

original images X and Y ) and the coloured areas represent some of the obtained

tolerance classesc. Note, the tolerance classes are created based on the feature values

of the subimages, and consequently, do not need to be situated geographically near

each other (as shown in Fig. 8). In the case of the NM, the idea is that similar

images should produce tolerance classes with similar cardinalities. Consequently,

we are comparing the cardinalities of the portion of a tolerance class belonging to

set X with the portion of the tolerance class belonging to set Y (represented in

Fig. 8 as sets with the same colour). In contrast, the Hausdorff distance measures

the distance between sets in some metric space. As a result, we measure distance

in the feature space between the portion of a tolerance class belonging to set X

with the portion of a tolerance class belonging to set Y (again, represented as a sets

with the same colour). Here, the idea is that images that are similar should have

tolerance classes are the close (in the Hausdorff sense) in the feature space. As a

result, low Hausdorff distances are desirable.

More recently, a new form of the Hausdorff distance, called the Perceptually

Modified Hasudorff Distance (PMHD), has been introduced that is in-line with the

notion of the perceptual underpinnings of near set theory. The PMHD is “percep-

tual” in the in the sense that humans view/recall an image by its dominant colours

and the proportions of dominate colours [Park et al. (2008)]. Consequently, the

PMHD is defined as follows. First, partition the images X and Y based on their

dominate colours. In this case we used the same approach given in [Park et al.

(2008)], namely, the images were partitioned the image using the k-means cluster-

ing algorithm with k = 10, 30 in the CIELab colour space. Once the images have

cThe tolerance relation covers both images, but not all the classes are shown in the interest of

clarity
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been partitioned into regions based on dominate colours, a statistical signature of

the images can be defined as

S = {(si, wi,Σi) | i = 1, . . . , N},

where N is the number of regions (clusters), si is the mean feature vector (mean

CIELab colour) of region i, and wi is the number of vectors (in this case pixels)

that belong to region i, and Σi is the covariance matrix of the ith cluster. Next,

given two statistical signatures

S1 = {(s1
i , w

1
i ,Σ1

i ) | i = 1, . . . , N} and

S2 = {(s2
j , w

2
j ,Σ2

j ) | j = 1, . . . , N},

the PMHD is defined as

dPMH(S1,S2) = max{dPM (S1,S2), dPM ((S2,S1)},

where

dPM (S1,S2) =

∑N
i=1[w1

i × minj(d(s1
i , s

2
j )/ min(w1

i , w2
j ))]

∑N
i=1 w1

i

.

Here d(s1
i , s

2
j ) is the Euclidean distance between the two vectors.

X Y

Z = X U Y

Fig. 8. Graphical representation of image correspondence problem.

5. Results

This section presents results of performing CBIR using the NM, and both forms of

the Hausdorff distance. The plot given in Fig. 7 suggests that the NM would be

useful in measuring the similarity of images. To investigate this property further,

we used the Berkeley Segmentation Dataset [Martin et al. (2001)] and the Leaves
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Dataset [Weber (1999)] (both freely available online) to perform CBIR using the

NM, and both Hausdorff distances. Specifically, the image in Fig. 5(a) was selected

as the query image and is compared to 200 images (100 from both the leaves and

Berkeley datasets, respectively)d, where the idea result of any of the measures would

be to have a higher value for all 100 leaf images since the query image belongs to

the leaves dataset. In other words, we hope to see the lowest NM value for the

leaf images be higher than the highest Berkeley NM value. Note, this would be

the opposite for the Hausdorff measures, as lower Hausdorff values correspond to

a higher degree of similarity. Also, as above, the probe functions used to generate

the tolerance classes were B = {φNormG(fs), φHPal
(fs)}, and the window size was

10 × 10. Finally, the measures were compared using precision versus recall plots.

Precision/recall plots are the common metric for evaluating CBIR systems where

precision and recall are defined as

precision =
|{relevant images} ∩ {retrieved images}|

|{retrieved images}
,

and

recall =
|{relevant images} ∩ {retrieved images}|

|{relevant images}
.

In the idea case (described above), precision would be 100% until recall reached

100%, at which point precision would drop to # of images in query category / #

of images in the database. In our case, the final value of precision will be 50% since

there are two categories each containing 100 images.

The results of these comparisons are given in Fig. 9 & 10, where Fig. 9 contains

the results of the queries for each individual measure, and Fig. 10 is a comparison

of the best results from each measure. The “best” results were selected by choosing

the parameters that returned the most leaf images before a Berkeley image was

selected. Notice that the best query results for the NM occur for ε = 0.1, the best

results for original Hausdorff measure occur for ε = 0.1, and the best results for

the PMHD occur for k = 10. Furthermore, notice, as given in Fig. 10, that the NM

produces the best precision/recall plot with 73 images retrieved from the leaves

dataset before a Berkeley image is selected, while both Hausdorff measures return

37 leaf images before a Berkeley image is selected. Note, while the PMHD is based

on the original Hausdorff measure, the fact that they both retrieved 37 images is

a coincidence due to the different nature of the underlying data being measured.

Recall, that the original Hausdorff measure is being used to measure the distance

between the portion of a tolerance class belong to image X and the portion of

the tolerance class belong to image Y , while the PMHD is comparing signatures of

clusters obtained by partitioning the images using the k-means clustering algorithm.

However, an important observation can be made given that the Hausdorff distance

dNote, the number of pixels in the leaf images were decimated by a factor of 4 to be closer in size

to the Berkeley images, i.e., their dimension was reduced from 896 × 592 to 448 × 296.
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is producing results comparable to the PMHD. Namely, that it appears as though

measuring the Hausdorff distance between portions of tolerance classes contained

in the two images produces better results than using it to compare sets of points in

colour space as is the usual method as evidenced by the similar results of the two

Hausdorff. However, experimental results of the two methods are needed before any

claim can be made.
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Fig. 9. Results of CBIR using Fig. 5(a) as query image: (a), (b) respective results of NM and HD
for ε = 0.01, 0.05, 0.1, and (c) results of PMHD with k = 10, 30.
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Fig. 10. Comparison of best results of NM, HD, and PMHD from Fig. 9.

What we can say for certain is that, based on these results, the NM outperforms

the PMHD suggesting that the perceptual information contained in tolerance classes

provides better retrieval results than comparison of the dominant image colours of

the PMHD. These results match intuition in that, at some level, our mind assesses

similarity by comparing the descriptions of the objects we are considering, and

that the comparison is not based on exact values (i.e., the equivalence of features)

but rather our mind easily allows some tolerance in making these comparisons.
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Consequently, it makes sense that a measure modelled on these types of comparisons

would produce the best results.

6. Conclusion

This article presents a practical application of near sets in discovering similar im-

ages and in measuring the degree of similarity between images. Near sets themselves

reflect human perception, i.e., emulating how humans go about perceiving and, pos-

sibly, recognizing objects in the environment. Although a consideration of human

perception itself is outside the scope of this article, it should be noted that a rather

common sense view of perception underlies the basic understanding of near sets

(in effect, perceiving means identifying objects with common descriptions). And

perception itself can be understood in Maurice Merleau-Ponty’s sense [1945], where

perceptual objects are those objects captured by the senses. In presenting this appli-

cation, this article has given details on how to apply near set theory to the problem

of images correspondence by way of calculating the nearness of images. The results

presented here demonstrate that the NM measure can be used effectively to create

CBIR systems. Moreover, it is the case that the choice of probe functions is very im-

portant. The results obtained so far in comparing nearness measures and Hausdorff

distance are promising. Future work in this research includes further comparisons

between the Hausdorff distances and NMs, and comparison of the original Haus-

dorff distance on set of image points with that of the Hausdorff distance applied to

tolerance class (as was done in this article). Also, future work will involve refining

the NM to allow it to be used for indexing. For instance, the NM in its current form

must be calculated anew for each image query. However, it should be possible to

develop a measure that can be calculated for each image in the database such that

each new query only needs to be compared with pre-determined NM values and not

recalculated each time. What is certain is that the results presented in this arti-

cle demonstrate that near set theory can be a useful tool in image correspondence

systems, and that perception-based image retrieval is possible.
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Hausdorff, F., Grundzüge der mengenlehre. Verlag Von Veit & Comp., Leipzig

(1914).

Hausdorff, F., Set theory. Chelsea Publishing Company, New York (1962).

Henry, C. and Peters, J., Near sets (2009a).

URL http://en.wikipedia.org/wiki/Near sets

Henry, C. and Peters, J., Near sets (2009b),

http://en.wikipedia.org/wiki/Near sets.

Henry, C. and Peters, J. F., Image pattern recognition using approximation spaces

and near sets. Proceedings of the Eleventh International Conference on Rough

Sets, Fuzzy Sets, Data Mining and Granular Computer (RSFDGrC 2007), Joint

Rough Set Symposium (JRS07), Lecture Notes in Artificial Intelligence, volume

4482 (2007), 475–482.

Henry, C. and Peters, J. F., Near set index in an objective image segmentation eval-

uation framework. Proceedings of the GEOgraphic Object Based Image Analysis:

Pixels, Objects, Intelligence, University of Calgary, Alberta (2008), to appear.

Henry, C. and Peters, J. F., Near set evaluation and recognition (near) system.



May 21, 2010 14:18 Emerald/INSTRUCTION FILE IJICC09-0702

20 REFERENCES

Technical report, Computational Intelligence Laboratory, University of Manitoba

(2009c), uM CI Laboratory Technical Report No. TR-2009-015.

Henry, C. and Peters, J. F., Perceptual image analysis. International Journal of

Bio-Inspired Computation, 2, 2 (2009d):to appear.

Hoogs, A. et al., A common set of perceptual observables for grouping, figure-ground

discrimination, and texture classification. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25, 4 (2003):458–474.

Kuo, S. and Johnson, J. D., Spatial noise shaping based on human visual sensitivity

and its application to image coding. IEEE Transactions on Image Processing, 11,

5 (2002):509–517.

Marti, J. et al., A new approach to outdoor scene description based on learning and

top-down segmentation. Image and Vision Computing, 19 (2001):1041–1055.

Martin, D. et al., A database of human segmented natural images and its appli-

cation to evaluating segmentation algorithms and measuring ecological statistics.

Proceedings of the 8th International Conference on Computer Visison, volume 2

(2001), 416–423.

Martinez, J. I., Skarmeta, A. F. G. and Gimeno, J. B., Fuzzy approach to the

intelligent management of virtual spaces. IEEE Transactions on Systems, Man,

and Cybernetics, Part B, 36, 3 (2005):494–508.

Meghdadi, A. H., Peters, J. F. and Ramanna, S., Tolerance classes in measuring

image resemblance. Intelligent Analysis of Images & Videos (2009):submitted.

Merleau-Ponty, M., Phenomenology of Perception. Smith, Callimard, Paris and

Routledge & Kegan Paul, Paris and New York (1945).

Mojsilovic, A., Hu, H. and Soljanin, E., Extraction of perceptually important colors

and similarity measurement for image matching, retrieval and analysis. IEEE

Transactions on Image Processing, 11, 11 (2002):1238–1248.

Montag, E. D. and Fairchild, M. D., Pyschophysical evaluation of gamut mapping

techniques using simple rendered images and artificial gamut boundaries. IEEE

Transactions on Image Processing, 6, 7 (1997):997–989.

Or lowska, E., Semantics of vague concepts. applications of rough sets. Technical

Report 469, Institute for Computer Science, Polish Academy of Sciences (1982).

Or lowska, E., Semantics of vague concepts. G. Dorn and P. Weingartner, eds.,

Foundations of Logic and Linguistics. Problems and Solutions, Plenum Pres,

London/NY (1985), 465–482.

Pal, S. and Peters, J., Rough Fuzzy Image Analysis. Foundations and Methodolo-

gies. CRC Press, Taylor & Francis Group (Sept., 2010), iSBN 13: 9781439803295

ISBN 10: 1439803293.

Papathomas, T. V., Kashi, R. S. and Gorea, A., A human vision based computa-

tional model for chromatic texture segregation. IEEE Transactions on Systems,

Man, and Cybernetics, Part B, 27, 3 (1997):428–440.

Park, B. G., Lee, K. M. and Lee, S. U., Color-based image retrieval using perceptu-

ally modified hausdorff distance. Journal on Image and Video Processing, 2008,



May 21, 2010 14:18 Emerald/INSTRUCTION FILE IJICC09-0702

REFERENCES 21

1 (2008).

Pawlak, Z., Classification of objects by means of attributes. Technical Report PAS

429, Institute for Computer Science, Polish Academy of Sciences (1981).

Pawlak, Z., Rough sets. International Journal of Computer and Information Sci-

ences, 11 (1982):341–356.

Pawlak, Z. and Skowron, A., Rough sets and boolean reasoning. Information Sci-

ences, 177 (2007a):41–73.

Pawlak, Z. and Skowron, A., Rough sets: Some extensions. Information Sciences,

177 (2007b):28–40.

Pawlak, Z. and Skowron, A., Rudiments of rough sets. Information Sciences, 177

(2007c):3–27.

Peters, J., Corrigenda and addenda: Tolerance near sets and image correspondence.

Int. J. of Bio-Inspired Computation, 2, 5 (2010), in press.

Peters, J. and Puzio, L., Image analysis with anisotropic wavelet-based nearness

measures. International Journal of Computational Intelligence Systems, 3, 2

(2009):1–17.

Peters, J. F., Classification of objects by means of features. Proceedings of the

IEEE Symposium Series on Foundations of Computational Intelligence (IEEE

SCCI 2007), Honolulu, Hawaii (2007a), 1–8.

Peters, J. F., Near sets. general theory about nearness of objects. Applied Mathe-

matical Sciences, 1, 53 (2007b):2609–2629.

Peters, J. F., Near sets. special theory about nearness of objects. Fundamenta In-

formaticae, 75, 1-4 (2007c):407–433.

Peters, J. F., Discovery of perceptually near information granules. J. T. Yao, ed.,

Novel Developements in Granular Computing: Applications of Advanced Human

Reasoning and Soft Computation, Information Science Reference, Hersey, N.Y.,

USA (2009a), in press.

Peters, J. F., Tolerance near sets and image correspondence. International Journal

of Bio-Inspired Computation, 1, 4 (2009b):239–245.

Peters, J. F. and Ramanna, S., Feature selection: A near set approach. ECML &

PKDD Workshop in Mining Complex Data, Warsaw (2007), 1–12.

Peters, J. F. and Ramanna, S., Affinities between perceptual granules: Foundations

and perspectives. A. Bargiela and W. Pedrycz, eds., Human-Centric Information

Processing Through Granular Modelling, Springer-Verlag, Berline (2009), 49–66.

Peters, J. F., Skowron, A. and Stepaniuk, J., Nearness of objects: Extension of

approximation space model. Fundamenta Informaticae, 79, 3-4 (2007a):497–512.

Peters, J. F. and Wasilewski, P., Foundations of near sets. Elsevier Science

(2009):In press.

Peters, J. F. et al., Biologically-inspired adaptive learning: A near set approach.

Frontiers in the Convergence of Bioscience and Information Technologies, Korea

(2007b).
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