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Abstract

Consider the set of those binary words with no non-empty factors of the form
zzx®. Du, Mousavi, Schaeffer, and Shallit asked whether this set of words grows
polynomially or exponentially with length. In this paper, we demonstrate the
existence of upper and lower bounds of the form n'$7+°(087) on the number of
such words of length n, where lgn denotes the base-2 logarithm of n.
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1. Introduction

In this paper we study the binary words avoiding the pattern zaz. Here
the notation z® denotes the “reversal” or “mirror image” of z. For example,
the word 011011110 is an instance of zzx®, with 2 = 011. The avoidability of
patterns with reversals has been studied before, for instance by Rampersad and
Shallit [10] and by Bischoff, Currie, and Nowotka [2, 3, 6].

The question of whether a given pattern with reversal is avoidable may
initially seem somewhat trivial. For instance, the pattern za® is avoided by the
periodic word (012)* and zxz’, the pattern studied in this paper, is avoided by
the periodic word (01)“. However, looking at the entire class of binary words
that avoid zzx® reveals that these words have a remarkable structure.

Du, Mousavi, Schaeffer, and Shallit [7] looked at binary words avoiding
zzx’. They noted that there are various periodic words that avoid this pattern
and also proved that a certain aperiodic word studied by Rote [12] and related to
the Fibonacci word also avoids the pattern zzz™. They posed a variety of con-
jectures and open problems concerning binary words avoiding zzz®, notably:
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Does the number of such words of length n grow polynomially or exponentially
with n?

The growth rate of words avoiding a given pattern over a certain alphabet
is a fundamental problem in combinatorics on words (see the survey by Shur
[13]). Typically, for families of words defined in terms of the avoidability of a
pattern, this growth is either polynomial or exponential. For instance, there
are exponentially many ternary words of length n that avoid the pattern zx
and exponentially many binary words of length n that avoid the pattern zzx
[4]. Similarly, there are exponentially many words over a 4-letter alphabet that
avoid the pattern zz in the abelian sense [5]. Indeed, the vast majority of
avoidable patterns lead to exponential growth. Polynomial growth is rather
rare: The two known examples are binary words avoiding overlaps [11] and
words over a 4-letter alphabet avoiding the pattern abwbcraybazac [1]. Tt was
therefore quite natural for Du et al. to suppose that the growth of binary words
avoiding zxz® was either polynomial or exponential. However, we will show
that in this case the growth is intermediate between these two possibilities. To
our knowledge, this is the first time such a growth rate has been shown in the
context of pattern avoidance.

Our main result is a “structure theorem” analogous to the well-known result
of Restivo and Salemi [11] concerning binary overlap-free words. The existence
of such a structure theorem was conjectured by Shallit (personal communica-
tion) but he could not precisely formulate it. The result of Restivo and Salemi
implies the polynomial growth of binary overlap-free words. In our case, the
structure theorem we obtain leads to an upper bound of the form nlgntesn)
for binary words avoiding zzz® (here lgn denotes the base-2 logarithm of n).
We also are able to establish a lower bound of the same type. In Table 1 we
give an exact enumeration for small values of n.

The sequence (ay,)n>1 is sequence A241903 of the On-Line Encyclopedia of
Integer Sequences [9)].

2. Blocks L and S

Define
K = {z €0{0,1}*1 : z avoids zzz’}.

Let the transduction h : {S,L}* — {0,1}* be defined for a sequence u =
H?:O Uiy Us € {SaL} by

00100 u; = 5 and i even
11011 u; = S and 7 odd
00100100 wu; = L and 7 even
11011011 w; = L and i odd.

h(ui) =

Then define

M ={u e {S,L}* : h(u) avoids zxz’}.



an n an n an n an
2 17 | 282 33 | 2018 || 49 | 8598
4 18 | 324 || 34 | 2244 || 50 | 9266
6 19 | 372 35 | 2490 || 51 | 9964
10 20 | 426 36 | 2756 || 52 | 10708
16 21 | 488 37 | 3044 || 53 | 11484
24 || 22 | 556 38 | 3354 || 54 | 12300
34 || 23| 630 || 39 | 3690 || 55 | 13166
48 24 | 712 40 | 4050 || 56 | 14062
62 25 | 804 || 41 | 4438 || 57 | 15000
10 | 80 26 | 908 42 | 4856 || b8 | 15974
11 | 100 || 27 | 1024 || 43 | 5300 || 59 | 16994
12 | 124 || 28 | 1152 || 44 | 5772 || 60 | 18076
13 | 148 || 29 | 1296 || 45 | 6272 || 61 | 19206
14 | 178 || 30 | 1454 || 46 | 6800 || 62 | 20388
15 | 210 || 31 | 1626 || 47 | 7370 || 63 | 21632
16 | 244 || 32 | 1814 || 48 | 7966 || 64 | 22924
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Table 1: Number of binary words a, of length n avoiding zzz™

Theorem 1. Let z € K. Then there exists a constant C' such that z can be

written
z = ph(u)st

where |p|,|s| < C, ue M, and t € (e+1)(01)*(e + 1).

Proof. Word z cannot contain 000 or 111 as a factor, so write z = f(v) where
v € {ab, ad, cb, cd}*, and

f:ra—0,b—1,c—00,d— 11.

Write v = prs where r is a maximal string of alternating a’s and b’s in v;
thus 7 lies in (e 4+ b)(ab)*(e + a). If |s| > 2, then we claim that |r| = 1 or
|pr| < 3. For suppose that |r| > 2, [pr| > 3 and |s| > 2. Let s1, s2 be the
first two letters of s. Then s; must be ¢ or d; otherwise, rs; is an alternating
string of a’s and b’s that is longer than r. Suppose s; = ¢. (The other case
is similar.) Since |r| > 2 and |pr| > 3, we conclude that prs;ss has yabess as
a suffix, some y € {b,d}. But then z contains a factor f(yabcss), which has a
factor 1f(abc)l = 101001 = zzz’?, where = 10. This is impossible.

If ab or ba is a factor of v, we can write v = prs as above, with |r| > 2.
This implies that |s| < 1 or |pr| < 2. If |pr| < 2, then p = €, |r| = 2, since
|| > 2; in this case pr = ab. If |s| < 1, then, since z ends in 1, either s = € or
s = d. In the first case, ab is a suffix of v; in the second ad is a suffix. It follows
that every instance of ab or ba in v either occurs in a prefix of length 2, or in a
suffix of the form (e+b)(ab)*(e+ ad). The given suffix maps under f to a suffix
t € (e4+1)(01)*(e+1) of z. We therefore can write z = py 21t such that [p1] < 2,
and z; = f(v1), for some vy € {ad, cb, cd}* where ba is not a factor of v;.



Write v1 = prs where r is a maximal string of alternating ¢’s and d’s in
vy. First of all, note that |r| < 7; we check that f(cdcdede) contains zzxx with
x = 0f(d)0, and, symmetrically, f(dcdcded) contains xzx with = 1f(c)1. We
claim that |r| < 3 or [pr| < 7. For otherwise, suppose that || > 3, and |p'r| = 7,
where p’ is a suffix of p. Assume that the first letter of r is ¢. (The other case is
similar.) Since |r| <7, p’ # e. Since r is maximal, the last letter of p’ is a b. If
|p'| = 1, then f(p'r) = f(bededed), which contains zxz® with x = 1f(c)1; this
is impossible. If [p| > 2, then ¢b is a suffix of p’ (since ab is not a factor of vq).
However, then p'r contains the factor cbede, and f(cbede) = 001001100 = 2z,
where x = 001, so this is also impossible. It follows that every instance of cdc
or ded in vy occurs in a prefix of v; of length 6. Removing a prefix p’ of length
at most 7 from v; then gives a suffix vy, such that the first letter of vs is a or
¢, and neither of cde and ded is a factor of vo. We can thus write z = pozot
where zo = f(v2), v2 € {ad, cb, cd}*, words ba, cdec, ded are not factors of v,
and |pa| < |p1] + [f(®")] <2+ 2(7) — 1 = 15. (Here, at most 6 letters of p’ can
be c or d, since cdedede and dededed lead to instances of zxa®.)

Suppose that v’ is any factor of v, of length 8. We claim that v’ contains
one of c¢d or dc as a factor. Since v’ ¢ {a,b}*, one of ¢ and d is a factor of v'.
Suppose then that ¢ is a factor of v'. (The other case is similar.) Suppose that
neither of cd nor dc is a factor of v’. It follows that v’ is bebebebe or chebebeb;
each of these contains cbcbebe, and f(cbebebe) contains 010010010 = zza® where
z = 010.

We may thus write vo = p’ ([i_, a;) ¢', with n > —1, [p|,|s’| < 7, such that
each a; begins and ends with ¢ or d, and neither of ¢d or dc is a factor of any
a;. By n = —1 we allow the possibility that the product term is empty. As
a convention, we write the product as empty if |va]eq + |v2]de < 1; for ¢ > 0,
then the last letter of p’ and the first letter of s’ are in {c,d}. Suppose n > 0.
Consider a;, ¢ > 0. Without loss of generality, let a; begin with c¢. The letter
preceding a; is either the last letter of a;_1, or the last letter of p’, and must be
a d. We cannot have |a;| = 1, which would force a; = ¢; word a; is then followed
by the first letter of a;;1 or of s, which must be d. Then ded is a factor of
vg, which is impossible. Thus |a;| > 2. Since cd is not a factor of a;, a; begins
with ¢b. Since a; ends with ¢ or d (not in b), a; # ¢b, so that |a;| > 3. Since
ba is not a factor of vg, a; therefore begins with cbe. If a; # cbe, then, since cd
is not a factor of a;, word a; begins with cbcb, and arguing as previously, with
cbebe. If cbebe is a proper prefix of a;, then a; begins with cbebeb. However,
f(cb)?0 contains an instance of xzx, so this is impossible: If a; begins with
¢, then a; € {cbe,cbcbe}. By the same reasoning, if a; begins with d, then
a; € {dad, dadad}.

Let vg = (p/)"tve(s')™' = [, ai. Deleting up to the first 5 letters, if
necessary, we assume that ag € {cbe, cbebe} (i.e., if ag begins with dad or dadad,
then delete these letters). Then z = pszzsst where z3 = f(vs), |ps| < |f(®')] +
Ip2| +5 < 2(4) +3+ 1545 =31, |s3| = |f(s")] < 2(4) +3 = 11. Here we use
the fact that at most 4 of the letters of p’ or s’ can be in {¢,d}; otherwise the
pigeonhole principle would force an occurrence of c¢d or dc in one of these.

We can write vg in the form g(u) where u € {S, L}*. Here write u = [~ ui,



each u; € {S, L}, and let g be the transducer

chbe u; = S and 7 even
dad u; = S and 7 odd
cbebe  uw; = L and i even

dadad wu; = L and 7 odd.

g(u;) =

Thus z3 has the form h(u) where h is the transducer

00100 u; = S and 7 even
11011 u; = S and 7 odd

h(ui) = :
00100100 wu; = L and 7 even
11011011 w; = L and 7 odd.
We have thus proved the theorem with C' = max(31,11) = 31. O

To study the growth rate of IC, it thus suffices to study the growth rate of
M.

The transducer h is sensitive to the index of a word modulo 2; thus, suppose
r, s € {S,L}* and r is a suffix of s. If |r| and |s| have the same parity, then
h(r) is a suffix of h(s). However, if |r| and |s| have opposite parity, then h(r) is
a suffix of h(s). (Here the overline indicates binary complementation.)

3. Suitable pairs of words
Let S, L € {S, L}*. Say that the pair (S, L) is suitable if

1. |S], |£] are odd.

2. There exist non-empty ¢, u, p € {0,1}* such that
(a) h(L) = LR
(b) M(S) = b= pu"e"
(c) h(L) = Lupttp

We see that (S, L) is suitable; specifically, we could choose p = 0, £ = 0010,
p = 00.

Since |S|, |£] are odd, the transducer h is sensitive to the index of a word
modulo 2, where lengths (and indices) are measured in terms of S and £; i.e., if
we use length function ||w|| = |w|s + |w|c; thus, suppose r, s € {S, L}* and r is
a suffix of s. If ||r|| and ||s|| have the same parity, then h(r) is a suffix of h(s).
However, if ||r|| and ||s|| have opposite parity, then h(r) is a suffix of h(s).

Lemma 2. Let S, L € {S, L}*. Suppose that (S, L) is suitable.

1. Word h(L)p~? is a prefiz of h(SS).
2. Word h(S) is both a prefix and suffiz of h(L).



Proof. The first of these properties is immediate from property 2(c) of the def-
inition of suitability. For the second, we see that h(L) = fupfp = peBuRp =
pfly (in the last step we use the fact that h(L) = h(L)%). O

Now suppose that S and £ are fixed and (S, £) is suitable. Define morphism
O {S, L} = {S,L}* by &(S) =SL, (L) =SLL.

Morphism @ is conjugate to the square of the Fibonacci morphism D, where
D(L) = LS, D(S) = £; namely, ® = £L~1D?£. This implies that for k > 1
[|@%(S)|| = Fars1, ||®*(L)|| = Fapyo, where Fy is the kth Fibonacci number,
counting from F} = F; = 1.

Lemma 3. Let 8 € {S,L}*. Then

1. h(®(SB)) is a prefiz of h(P(LB)) and h(P*(SB)) is a prefiz of h(P?(LB)).
M@(SP)) is a suffix of h(®(LB)).

h((I>2(SB)) is a suffiz of h(®2(LB)).

R(®(L))p~" is a prefiz of h(P(SS)).

R(®%(L))(P)~! is a prefir of h(®%(SS)).

Proof. Since ®(S) is a prefix of ®(L), ®(SB) is a prefix of ®(LS), so that
h(®(SB)) is a prefix of h(®(LA)). Similarly, h(®2(SB)) is a prefix of h(®2(Lf)),
establishing (1).

Since S is a suffix of £, we see that ®(S) is a suffix of ®(L). Because |®(L)]
is odd, while |®(S)]| is even, it follows that h(®(S)) is a suffix of h(®(L)). More
generally, if 3 € {S, L}*, h(®(SPB)) is a suffix of h(P(LB)), establishing (2). The
proof of (3) is similar.

For (4), h(®(L))p~* = hW(SLL)p™ = h(S
R(SL)h(SS), which is in turn a preﬁx of h(S YA(SL) = h(P(SS)).

For (5), h(®2(£))(p) " = h(B(SL)B(L))() = h(B(SL)A(B(L))pT (since
|®(SL)| is odd), which is a prefix of h(®(SL))R(P(SS)) = h(P(SL)P(SS)),
which is in turn a prefix of h(®(SLSSL)) = h(®?(SS)). O

.U‘P.W!\’

L)h(L)p~t, which is a prefix of

In order to count the words in which we are interested, we prove a sequence
of lemmas, ending with the structure result, Lemma 8. This lemma, and the
lemmas leading up to it are very technical; roughly speaking, they consider
the structure of sets which are ‘almost” ®~1(M), ®=2(M) and ®~3(M). We
exclude certain words b from these sets, on the basis that (variously) h(®(b)),
h(®2(b)), h(®3(b)) contain instances of zxx’.

Define the set B C {S, L}*:

B = (S+L)SSSL(L+SS+SL)ULSSL(L+SS+SL)U(S+ L)LLLLL(S + L)
U(S + L)LSLLL(S + L)
UD((S + L)SS(S + L)) UB((S + L)LLLSL(L + SS + SL))
UD2(LLL(S + L)) UD((S + L)LSS(S + L)) UDX((S + L£)SSSSS(S + L))

Lemma 4. Let u € M. Then no word of B is a factor of u.



Proof. Tt suffices to show that for each word b € B, h(b) contains a non-empty
factor zza®. B is written as a union, and we make cases based on which piece
of the union b belongs:

b€ (S+L)SSSL(L+SS+SL): In this case, it suffices to show that h(SSSSLL)(p)~*
contains a non-empty factor zza®, because of the results of Lemma 2. In par-
ticular, h(SSSSLL)(p)~! is a suffix of h(LSSSLL)(p)~!, which is a prefix of
h(LSSSLSS), which is a prefix of h(LSSSLSL). Again, h(SSSSLL)(p)~* is

a prefix of h(SSSSLSS), which is a prefix of h(SSSSLSL). Now

W(SSSSLL)(p) !

() (ROT) (L) (uPLR) (€67 (CppaT)
= LupBRORCupRIR R0 R

= 0 ppBeRe ppBeRe (Ropup”

which contains an instance of zzx with « = puufeERL.

be LSSL(L+ SS + SL): In this case, it suffices to show that h(LSSLL)p~!
contains a non-empty factor zzz’, because of the results of Lemma 2. But

h(LSSLL)p™!

(PP 07 () (07 (C0R) (L)
= pap ™ eReR R

= p pu"e"0 puRetl (RepuR

which contains the instance zzz® with z = aueRe.

be (S+L))L(S+ L): In this case, it suffices to show that h(SL>S) contains
a non-empty factor zza®, because of the results of Lemma 2. But

h(SLS)
= () (COR) (00T (£0R) (67 (R ) (0
= pROROR R IOR R R
= uf* (R0Re (ReeRe ¢ReeRe g

which contains the instance zzz® with z = ¢R0¢EL.

be (S+L)LSLLL(SHL) : In this case, it suffices to show that h(SLSLLLS)

contains a non-empty factor xzx’®, because of the results of Lemma 2. Here

h(SLSLLLS)
(£42) (LR ) (Cpa) (CER) (£07 ) (COR) ()
= CplORep IR0 00R R

0 pllRe pleRe (ReeRy R R



which contains the instance zzz® with z = uﬁlﬁﬁ.

be d((S+L)SS(S+ L)) : In this case, it suffices to show that h(P(SSSS))
contains a non-empty factor xza®, because of the results of Lemma 3. In
particular, h(®(SSSS)) is a prefix of h(P(SSSL)), h(P(SSSS)) is a suffix of
h®(LSSS)), and h(P(SSSL)) is a suffix of h(P(LSSL)). However,

h(D(SSSS))
= (uBOR0R) (BB eR) (u BB R (R eR)
e Ry RyRy R ReRy R, BeRy (R

containing an instance of zazz®, with z = (Ruf¢Re,

be ®((S+ L)LLLSL(L +SS + SL)) : In this case, it suffices to show that
h(®(SLLLSLL))p~! contains a non-empty factor xzz®, because of the results
of Lemma 3. But

WB(SLLLSLL))p™?
= (BB (W BB R0 (uRER LR OOR) (U R OOROOR) (R OROOR) (Ol ROOR) (Ll Ry
plt OReeR R ggRee R ReRy R BB ggReeR  RORY (R 00ROROuOORE R

an instance of zza® with x = (RRRIRIIRR RIRY,

b€ ®*(LLL(S + L)) : In this case, it suffices to show that h(®*(LLLS))
contains a non-empty factor xzx’®, because of the results of Lemma 3. But

h(®*(LLLS))

= (CpllROplOROPE 00T OOR ) (Ll bRl 0RO E bt ROOR) (0l R 0B 0OR (07 RO (1R ((R)
(B OROOR R 007

= Upl - ORO ORI OO0 00ROl - ORE OB OO0 0ROOR 0 - 0B RO RO 00 W ROR T (IR ) g R
LRYpOOR PR

containing an instance of zaza®, with & = (RLOIRIIRIL0ROIR L.
b€ P2((S+L)LSS(S+L)) : In this case, it suffices to show that h(P?(SLSSS))
contains a non-empty factor zzz’®, because of the results of Lemma 3. Now

h(®*(SLSSS))

= (CpllROpOOROLR) (bt Ot 0RO IR 00T (Ol 0RO 0B 00R) (0l R R o0 R R
(uROR 00T RIROPRIIR)

= CpllROpl - CROOTOuO0R T B O0R Ol - RO C 00ROt 0 R 00R 010
AR T YRR PR RO RYRpPEY . (R




containing an instance of zxa®, with & = (RORIIIRI00ROIRL.

b € ®%((S + L)SSSSS(S + L)) : In this case, it suffices to show that
h(®2(S7)) contains a non-empty factor zzz, because of the results of Lemma 3.
Finally,

h(®*(87))

(CpllROpOOR LR (bl ROROOROOR) (Ll REpLOR 00T (Cpub 0B BB 4R (R

(CpllROpOORLLR) (bl RAROPROOR) (Ll ROl e R 00T

= Upl - OROpOOR OO0y ROROROR [ 0B - 0RO 00R 0001000 W ROR OO0 1 B0 R0
AR COR T 00 R W ROROOTQOR  p BT . (R e R R

containing an instance of zza®, with = (RLplIRIPRT00R [ RIRIIR QIR 1R BT,
O

4. Parsing words of M using ®

Lemma 5. Lety € {S,L}* N M. Then y can be written
y =p1®(y1)sita,

where |p1|,|s1] <9, y1 € {S, L}, and t1 € (e+8+8*+83)LS*+S*(e+L+LS).
(Here all lengths are as words of {S, L}*; thus, for example |p1| = |p1|c+|p1ls-)

Proof. Suppose that |y|z = n. If n = 0, the lemma is true, letting t; = y. If
n =1, write y = S¥£S7. Since by Lemma 4, SSSSLSS cannot be a factor of
y € M, we have k < 3 or j < 1; thus we can again let ¢; = y, and we are again
done.

Suppose from now on, that n > 2, and write y = ([];_, S™L)S™+!, where
each m; > 0. For 1 <7 <n—1, word LS™i+1L has one of LL, LSL or LSS
as a prefix, depending on whether m;11 = 0,1 or m;y1 > 2, respectively. This
implies that for 1 <i <n — 1, we have m; < 3, since by Lemma 4, no word of
SYLL+ LSL + LSS) can be a factor of y € M. For 2 < i < n — 1, we have
m; < 1, since no word of £(8? +83)(LL + LSL + LSS), can appear in y. Since
S*L£S? cannot be a factor of y € M, if Mp41 > 2, then m,, < 3. We have thus
established that

YE(e+S+S*+S)L((e+8)L)" ((e+ S+ 8>+ 8*)LSSS* + S*L(e+S))
Write y = p'y’t1, where
peE(e+S+S*+8%),y cL((e+S)L),

t1 €(e+S+S*+S*LSSS* +S*L(e+S).

In particular, SS is not a factor of y/'.



Without loss of generality, suppose |y| > 7 and |y’| > 6. (If |y| < 6or |y/| <5,

/1,11

let p1 = p'y/, y1 = s1 = ¢, and the lemma holds. Write 3y’ = p”y"s1, where
[p”| =4, |s1| = 2. We next consider the placement in y, ¢/, ¥ of hypothetical
factors £F, k > 3:

e LF k> 6, cannot be a factor of y: If £8 is a factor of y, so is one of SLO,
LS or L7, since |y| > 7; this is impossible.

e L5 can only appear in y as a prefix or suffix: Otherwise, y contains some
two-sided extension of £5. As L5 is not a factor of y, this must be SL£5S.
This is impossible by Lemma 4.

e L% is not a factor of py” o, where p is the last letter of p”” and o is the first
letter of s;: The length 5 left extension of an occurrence of £* in py”c
cannot be £? because of the previous paragraph; it must be S£*. Since
SS is not a factor of 3/, the further left extension £S£* must thus also
be a factor of y'. However, this forces ¥’ to contain one of the further left
extensions LLSL* and SLSL*, which is impossible.

e £3isnot a factor of y””: Suppose that £3 is a factor of 4”. By the previous
paragraph, its extension S£3S is a factor of py”o. Since 8S is not a factor
of 4/, the extension of S£3S to £SL£3S must be a factor of y’. One of the
further left extensions £L£LSL3S and SLSL3S must thus occur in 3/, but
these are impossible by Lemma 4.

We have now shown that neither of S? and £3 can be a factor of 3. Thus
y" € (L+ LL)(SL+ SLL)* .
Let p” be the longest prefix of y”” of the form £F, and write 3/ = p’’y;. Letting
p1 = p'p"p", we have |p1| < 3+ 4+ 2, so the lemma holds. O
5. Parsing words of M using ®2
Lemma 6. Let y; € {S, L}*, such that ®(y1) € M. Then y; can be written
y1 = p2P(y2)sata,

where |pa, |s2| < 4,y2 € {£,S}" and
tr€ ((e+ L+ LP+ LY)SL + LY (e +S+SL)) (e+S+L).

Proof. From Lemma 4, no word of

(S + L)SS(S + L) U (S + L)LLLSL(L + SS + SL)
UB(LLL(S + L)) UD((S + L)LSS(S + L)) UD((S + £)SSSSS(S + L))

can appear in y;. This includes all length 4 two-sided extensions of SS; it
follows that SS can only appear in y; as a prefix or suffix.
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If |y1] < 1, we are done. In this case, let py = y1, y2 = s = t2 = e
Therefore, we will assume that |y;| > 2, and write y; = p'y's’, [p| = || = 1.
Then 8§ is not a factor of y’.

Suppose that |y'|s = n. If n = 0, the lemma is true, letting po = p’,
Yo = 853 =€, lo = 9's'. If n = 1, write y/ = LFSLI. Since £L*SL? is not a factor
of y1, k <3 or j < 1; thus we can let po =9/, t2 = 9/'s’, and we are again done.

Suppose from now on, that n > 2, and write y’ = ([[;—, £L™S)L™»+1, where
each m; > 0. For 1 <i <n—1, mjy; <1, since 8§ is not a factor of y'. It
follows that for 1 < i < n —2 SL™+:SL™i+2 has one of SLSL or SLL as a
prefix. This implies that for 1 < i < n — 2, we have m; < 3, since L*SLSL and
LASLL are not factors of y;. In fact, for 2 < i < n — 2, we have m; < 2, since
SL3SLSL and SL3SLL are not factors of y;. We have thus established that

Y €(e+ L+ L+ L3 (SLHSLL) SLisck

Since £*SL? is not a factor of y;, we require k < 3 or j < 1. Write v/ = p"ySt”
where p”’ € (e + L+ L2+ L3), yo € (SL+SLL)", t" € SLFSLI k<3orj<1.

/A1

Let po = p'p”, s5 = 8§, to = t"’s’. The lemma is established. O

6. Parsing words of M using ®3

Lemma 7. Let yo € {S,L}* such that ®?(y2) € M. Then ya can be written

y2 = p3®(y3)ss,
where |ps|, |s3| < 6,y3 € {£,S}".

Proof. From Lemma 4, no word of

LLL(S+ L) U (S +L)LSS(S + L) U (S + L)SSSSS(S + L)

can appear in yo. These include both of the length 4 right extensions of LLL;
it follows that LLL can only appear in y, as a suffix. They also include all of
the length 5 two-sided extensions of £LSS; Thus LSS can appear in ys only as
a prefix or suffix. Finally, they include all length 7 two-sided extensions of S°.
Thus, S® can only appear in y, as a suffix or prefix. If |ys| < 4, we are done.
Assume that |ys| > 5, and write yo = p'y’s’, |p’| = 4, |s'| = 1. Then LLL is not
a factor of 3'. We also claim that SS is not a factor of y’. Otherwise, o has a
factor pSS which is not a suffix, with |p| = 4. However, the length 5 suffix of
pSS is not a prefix or suffix of g5, and contains either S® or LSS as a factor;
this is impossible.

Since neither of £3 or 82 is a factor of ya, we have ' € (e + L + L2)(SL +
SLL)*(e + 8), and can write 3’ = LF®(y3)S’ where k < 2, s < 1. The lemma
therefore holds. O
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7. A hierarchy of S’s and L’s
Combining Lemmas 5 through 7 gives the following:

Lemma 8. Let y € {S,L}* N M. Then y can be wrilten
y = p12(p2®(p3®(y3)s3)sata)sity,
where |p1], |s1] <9, |p2l,|s2| < 4, |psl,|s3] <6, and
t1 €(e+S+S*+SHLS* +S*(e+ L+ LS),
ta€ ((e+ L+ L+ LYSL + LY (e + S+ 8L)) (e+ S+ L).

Corollary 9. Lety € {S,L}* N M. Then there is a constant k such that y can
be written

y = m®%(y3)0,

where o can be written o1 ®(L)028% a3, with |wo0903| < k.

Lemma 10. Suppose that (S, L) is suitable, and |h(S)| is odd, |h(L)| even. Let
Y = (SLSL)'®3(S)SLSL, A= (SLSL) '3 (L)SLSL.

Then (X, A) is suitable, and |h(X)| is odd, |h(A)| even.

Proof. Each of |X], |A] is odd. Let

0= WLSLSLLSLLS), ji=(BR(SL), p = (RR(LSLSL)

h(E) = h((SLSL)'®3(S)SLSL)

= h((SLSL) 'SLSLLSLSLLSLLSLSL)
= h(LSLSLLSLLSLSL)

= h(LSLSLLSLLS)IUER(SL)

= i
For a word z € {8, L}* with || even, we observe that h(z%) = (h(2))®. There-

fore, we also have

Y = h(LSLSLLSLLSLSL)

= h(LS)WML)W(SLLSLLSLSL)

= (W(SL) 0™ (W(LSLSLLSLLS))
RER

|
=

Further,
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hA) = h(SLSL)  ®3(L)SLSL)

= h((SLSL) 'SLSLLSLSLLSLLSLSLLSLLSLSL)
WLSLSLLSLLSLSLLSLLSLSL)
= WLSLSLLSLLS)W(L)WSLLSLLSLSE)

WLSLSLLSLLS) (R (W(LSLSLLSLLS))T

= (iR

Finally,

h(A) = h(LSLSLLSLLS) (Rh(SLLSLLSLSL)
h(LSLSLLSLLS)C (Rh(SL) h(LS) h(L)h(LSLSL)
hLSLSLLSLLS)E ERh(SE) h(LS) @ﬁh(ﬁSﬁSﬁ)

= (piBp
O

This result combines with Corollary 9 to allow us to parse words of M. Let
Lo =L, Sy =S. Supposing that (S;, L;) is suitable, let £L = L;, S = S;, and

Liv1 = (S;L;iS;L;) ' ®3(L;)S;LiSiLs, Siv1 = (S;L;iS;Li) ' ®3(L;)S;LiS; L.
Since (S, L) is suitable, all of the pairs (S;, L;) will be suitable by Lemma 10.

Suppose y € {S, L}*NM. By repeatedly applying Corollary 9, we write y = fvd
where v € {S;, L; }*.

8. Upper bound on growth rate

If H is a language, denote by #(H,n) the number of words of H of length
n. If Ny is a positive integer, the statements

For n > 1, #(H,n) < nlentolen) (1)
and
For n > Noy, #(H,n) < nlgntolsn) (2)
are equivalent; let K = 1 4+ max,<n, #(#,n). Suppose that for n > N,
#(H,n) < nlentelen) Then for n > 1,
#(H, TL) < Knlg n+o(lgn)
— plento(lgn)+log, K

< nlg n+o(lg 71,).

Define
N ={z€{0,1}* : z avoids zza"}.
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Theorem 11. Forn > 1, #(N,n) < nlgntollen)

Recall that
K = {z €0{0,1}*1 : z avoids zzz’}.

Suppose that for n > 1, we have #(K,n) < n'¢"+t°(€7)  Then, since neither of
000 and 111 can be a factor of a word of N,

N C (e,1,11)K(€,0,00)
so that for n > 5,

#(N7 T‘L) #(lC,n) + 2#(]Ca n-— 1) + 3#(’Cvn - 2) + 2#(]Ca n-— 3) + #(’C,'ﬂ - 4)

gnlg n+o(lgn)

ININCIA

nlg n+o(lgn)

where the last inequality uses 9 < nl°8»9 = n°(87) to absorb the 9 into the

n (Ign) term. Re lacin N() =5 by 1, it fOHOWS that fOY n > 1 # N n) <
p g ) ) b —_
nlgn-‘ro(lgn).

It remains to show that for n > 1, #(K,n) < nlgntolezn),
Let 7 = (e+1)(01)*(e + 1). Thus

1
2

n<l1
n > 2.

)

9

#(Ta n) = {

Let C be the constant from Theorem 1, and let P be the set of binary words
of length C or less. From Theorem 1, each word k of X has the form ph(w)st
where p,s € P, we M and t € T.

Suppose that we can show that for n > 1, #(M,n) < nl&ntelen)  Since
8lw| > |h(w)| > 5lw|, if |k| = n, then n/8 < |w| < n/5. Thus, if n > 8, then
lw| > n/8 > 1 and #(M,|w|) < |w[8lwl+elelw) g5 that there are at most
(n/5)e(n/5)+e(s(n/5) choices for w. There are at most 26+ choices for each of
p and s, and once p, s and w are chosen, there are at most 2 choices for ¢. In
total,

#(’C, n) 2C+1(n/5)lg(n/5)+o(lg(n/5))QC’+12

<
S 220+3nlg n+o(lgn)
<

nlg n+o(lgn)

where the last inequality uses 22¢13 < n2C¢+3 = polen) o absorb 22¢+3 into

the n°(18™) term. Replacing Ny = 8 by 1, it follows that for n > 1, #(K,n) <
nlgn+o(lgn)_

We have thus reduced the proof of Theorem 11 to the following:

Theorem 12. Forn > 1, #(M,n) < nlentolen)

14



Proof. Let y € M have length n. Choose (S,L) = (S,L). Then iteration of
Corollary 9 gives

y =p1®®(p2®®(p3 -+ P @ (€) 5y - - 53)82) 51,
where m < (Ign)/3. For i € {1,--- ,m} we have
S; = al,iq)(ﬂj")ag,isk*ag,i

Since |p;03,i02,01,] < K, there is a constant « such that there are at most «
choices for (p;, 0.3, 04.2,0;,1). This gives a number of choices for {(p;, 0; 3,0:.2,0:1)}7%4
which is polynomial in n.

This leaves the problem of bounding the number of choices of the j; and k;.

We have

n > |@P3(- D3 (e)D(LIm)SEm - (L) SK)B(LI2)SP)D(LI)SH |

m

= N (il @¥2L)| + kil @53(S)])

1

(2

I
NE

(jiFei—2 + kiFsi—5)
i=1

It follows that the number of choices for the j;, k; is less than or equal to the
number of partitions (with repetition) of n with parts chosen from {Fs;11}5°,.
Since F3;,1 > 2¢, this is less than or equal to the number of partitions of n into
powers of 2. Mahler [8] showed that the number p(n,r) of partitions of n into

powers of r satisfies

g'n

lgp(n,r) ~ lgTW

thus, p(n,2) ~ nl&n+telen)  The result follows. O

9. Lower bound on growth
Let ¢ : {S,L}* — {S, L}* be given by
W(S) = LSL, (L) = LSLSL.
Since 9(5), ¥(L) are palindromes, we have
Y(u) = (Y(u) ue {S, L}
Letting (S, L) = (S,L), we find that ¢ = (LSL£)"'D3LSL. Tt follows that
V¥ ()] = Fapsr, [ (L)| = Fapea.
Define languages .Z; by

Lo =LS", Zip1 =Y(L)LS™.
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Let £ = UX,.%.
A word w € .Z has the form

w =p(Y(p(- - P(P(LSFm)LS*m=1) - ) LS+ ) LM ) LSH

so that the number of words of .Z of length n is the number of partitions of n
of the form

n=> (Faiys+kiFsi1).
=0

Since Fj; < 2%, this is greater than or equal to the number of partitions of n
of the form

m

n = Z (23i+1 4 kt23l) ’

i=0
which is greater than or equal to the number of partitions of n of the form

m

n= (k+1)2%"".

=0

This, in turn, is at least half of the number of partitions of n of the form

m
n = E ki231+17
=0

which is the number of partitions of n/2 of the form

n/2 = i k8%
=0

Following Mahler [8], this is p(n/2,8) ~ nlgn+olen)  We will show that no
word of h(.#) has a non-empty factor zzz®, so that this gives a lower bound

on N.
One checks the following:

Lemma 13. No word of £ has any of the following factors:
L3 SSL,SLSLS, LSLSLLSLSLLSLSL =+ (L?), LLSLLSLLSLSL

LSLLSLSLLSLLSLSLLSL = ¢ (SLSLS).
Theorem 14. No word of h(.ZL) contains a non-empty word of the form xxx'.

Proof. Suppose w € £, and xzz! is a non-empty factor of h(w). Let

W= ((h(S) + 1(L))(A(S) + @))* = ((00100 + 00100100)(11011 + 11011011))" .
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Thus h(w) is a factor of a word of W. Note that none of 000, 111, 0101, 1010,
001011, 110011, 010010010, is a factor of any word of W, nor thus, of w. Also,
£ = 0010 is always followed by 01 in any word of W, while /£ = 1011 is always
preceded by 01.

If |z| <2, then h(w) contains a factor 000, 111, 010110 or 101011. The last
two contain 0101, so this is impossible. Assume therefore that |z| > 3 and write
x = 2'afy, where a, 3, v € {0,1}. Then aByvyBa is a factor of zzx. Suppose
that v = 0. (The other case is similar.) Since 000 is not factor of w, we can
assume that 8 = 1. Since 110011 is not a factor of w, afy = 010. If |z| = 3,
then xzzf is 010010010, which is not a factor of w. We conclude that |z| > 4.
Since 1010 is not a factor of w, £ = 0010 is a suffix of z. Write x = 2’4, so that

mwa — .CL'”ZQTNKER(SC”)R — .%‘ng”h([/)(xu)R.

Since x"¢x" precedes h(L) in a word of W, the length 4 suffix of z”¢z"” must
be 1011; since z” follows £ in h(w), it follows that 2’ begins with 0. Therefore,
|z”| > 5. Tt follows that 2" must end with 11011, so that, in fact, |z”| > 6, and
011011 is a suffix of 2”. If |2”| = 6, then

zzz® = 0110110010 0110110010 0100110110 = 011011A(SSL)110110.

This forces SSL to be a factor of w, which is impossible, since w € .. Thus
|x”| > 7.

Since 0101 is not a factor of w, if suffix 011011 of z” is preceded by 1, it is
preceded by 11, and h(L){ is a suffix of . This forces r2® to have

h(L)et®h(L)R = h(L)h(L)h(L)

as a factor, forcing LLL to be a factor of w, which is impossible. We conclude
that 0011011 is a suffix of z”. Since " follows £ in w, 01 must be a prefix of 2.
Suppose 011 is a prefix of z”. Since 0011011 is a suffix, then z”/¢z” has factor

00110114011 = 00R(S)h(S)11

and w has a factor SSuL for some wu; this is impossible. We conclude that 010
is a prefix of z”’; since 0101 is not a factor of w, in fact, 0100 = ¢ is a prefix of
z”. In total,

zxx™ = (730 (B30 0R3Re

The ‘bracketing’ by £ and ¢ forces w to contain a factor uLuLuf®, where |u| is
odd.

Consider the shortest factor uLuLuf or w, where |u/ is odd.

If the last letter of u is L, then LLL is a central factor of uLu. This is
impossible. Thus S is a suffix of u. If u = S, then uLuLu® = SLSLS, which is
not a factor of any word of .. We conclude that |u| > 1, so that |u| > 3, since
|u| is odd.

Since SSL is not a factor of w, the length 3 suffix of uL is LSL. This makes
LSLSL a central factor of uLu®®. Since SLSLS is not a factor of w, the length
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3 suffix of wis LLS. If w = LLS, then Lu has prefix LLL, which is not a factor
of w. We conclude that |u| > 5.

Since neither of LLL and SS is a factor of w, we conclude that LSLLS is the
length 5 suffix of u. If w = LSLLS, then uLuLu®™ = LSLLSLLSLLSLSLLSL,
with illegal factor LLSLLSLLSLSL. Thus |u| > 7.

If the length 7 suffix of w is LSLSLLS, then a central factor uLuf is
LSLSLLSLSLLSLSL, which is not a factor of w. We conclude that the length
7 suffix is SLLSLLS.

Write w = ¢ (v)LS* for some v € &, some k > 0. Since |w|; > 1, v # e
Then w has suffix LLS*, and prefix uLuLSL of uLuLu®™ must be a factor
of ¥(v). Let L(LSL)™L be a factor of uLu where m is as large as possi-
ble. Since uLuLSL has suffix LSLSL, and uLuLSL is a factor of ¢ (v), word
L(LSL)™LSLSL must be a factor of uLuLSL. If m > 2, then uLuLu® has
illegal factor LLSLLSLLSLSL. We conclude that m =1, so that LLSLLSLL
is not a factor of uLu

In the context of uLu, word u follows the suffix LLSLLSL of uL. Therefore,
u cannot have L as a prefix or uLu contains the factor LLSLLSLL. It follows
that SL is a prefix of u. However, a prefix of u cannot be SLS; otherwise uLu
would have factor «LSLS which has illegal suffix SLSLS. It follows that the
length 3 prefix of v is SLL.

Write

w=S8L:Lu'SL:LSL:LS

The colons indicate boundaries in u between instances of 1(S) and t(L). Thus,
we may write u = SLi(u”)LS, for some word v in .Z. Since |¢(S)| = [¢(L)| =
1 (modulo 2), we have

lu| = [ (u")| = |u”| (modulo 2).
Then

uLulu® = Sy )LSLSLy(u")LSLSL(y(u"))?LS
SLyp(u Lu" L(u")?) LS.

Recall that w = ¥(v)LS*. Although the suffix LS of uLuLu® may occur
here as a prefix of LS*, certainly uLuLu®(LS)™! is in 1 (v). We conclude that
u” Lu" L(u") is a factor of ., where u” has odd length shorter than u. This
is a contradiction. 0
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