
Growth rate of binary words avoiding xxxR

James Currie1,2, Narad Rampersad∗,1

Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue,
Winnipeg, Manitoba R3B 2E9 (Canada)

Abstract

Consider the set of those binary words with no non-empty factors of the form
xxxR. Du, Mousavi, Schaeffer, and Shallit asked whether this set of words grows
polynomially or exponentially with length. In this paper, we demonstrate the
existence of upper and lower bounds of the form nlgn+o(lgn) on the number of
such words of length n, where lg n denotes the base-2 logarithm of n.
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1. Introduction

In this paper we study the binary words avoiding the pattern xxxR. Here
the notation xR denotes the “reversal” or “mirror image” of x. For example,
the word 011 011 110 is an instance of xxxR, with x = 011. The avoidability of
patterns with reversals has been studied before, for instance by Rampersad and
Shallit [10] and by Bischoff, Currie, and Nowotka [2, 3, 6].

The question of whether a given pattern with reversal is avoidable may
initially seem somewhat trivial. For instance, the pattern xxR is avoided by the
periodic word (012)ω and xxxR, the pattern studied in this paper, is avoided by
the periodic word (01)ω. However, looking at the entire class of binary words
that avoid xxxR reveals that these words have a remarkable structure.

Du, Mousavi, Schaeffer, and Shallit [7] looked at binary words avoiding
xxxR. They noted that there are various periodic words that avoid this pattern
and also proved that a certain aperiodic word studied by Rote [12] and related to
the Fibonacci word also avoids the pattern xxxR. They posed a variety of con-
jectures and open problems concerning binary words avoiding xxxR, notably:
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Does the number of such words of length n grow polynomially or exponentially
with n?

The growth rate of words avoiding a given pattern over a certain alphabet
is a fundamental problem in combinatorics on words (see the survey by Shur
[13]). Typically, for families of words defined in terms of the avoidability of a
pattern, this growth is either polynomial or exponential. For instance, there
are exponentially many ternary words of length n that avoid the pattern xx
and exponentially many binary words of length n that avoid the pattern xxx
[4]. Similarly, there are exponentially many words over a 4-letter alphabet that
avoid the pattern xx in the abelian sense [5]. Indeed, the vast majority of
avoidable patterns lead to exponential growth. Polynomial growth is rather
rare: The two known examples are binary words avoiding overlaps [11] and
words over a 4-letter alphabet avoiding the pattern abwbcxaybazac [1]. It was
therefore quite natural for Du et al. to suppose that the growth of binary words
avoiding xxxR was either polynomial or exponential. However, we will show
that in this case the growth is intermediate between these two possibilities. To
our knowledge, this is the first time such a growth rate has been shown in the
context of pattern avoidance.

Our main result is a “structure theorem” analogous to the well-known result
of Restivo and Salemi [11] concerning binary overlap-free words. The existence
of such a structure theorem was conjectured by Shallit (personal communica-
tion) but he could not precisely formulate it. The result of Restivo and Salemi
implies the polynomial growth of binary overlap-free words. In our case, the
structure theorem we obtain leads to an upper bound of the form nlgn+o(lgn)

for binary words avoiding xxxR (here lg n denotes the base-2 logarithm of n).
We also are able to establish a lower bound of the same type. In Table 1 we
give an exact enumeration for small values of n.

The sequence (an)n≥1 is sequence A241903 of the On-Line Encyclopedia of
Integer Sequences [9].

2. Blocks L and S

Define
K = {z ∈ 0{0, 1}∗1 : z avoids xxxR}.

Let the transduction h : {S,L}∗ → {0, 1}∗ be defined for a sequence u =∏n
i=0 ui, ui ∈ {S,L} by

h(ui) =


00100 ui = S and i even

11011 ui = S and i odd

00100100 ui = L and i even

11011011 ui = L and i odd.

Then define

M = {u ∈ {S,L}∗ : h(u) avoids xxxR}.
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n an n an n an n an
1 2 17 282 33 2018 49 8598
2 4 18 324 34 2244 50 9266
3 6 19 372 35 2490 51 9964
4 10 20 426 36 2756 52 10708
5 16 21 488 37 3044 53 11484
6 24 22 556 38 3354 54 12300
7 34 23 630 39 3690 55 13166
8 48 24 712 40 4050 56 14062
9 62 25 804 41 4438 57 15000
10 80 26 908 42 4856 58 15974
11 100 27 1024 43 5300 59 16994
12 124 28 1152 44 5772 60 18076
13 148 29 1296 45 6272 61 19206
14 178 30 1454 46 6800 62 20388
15 210 31 1626 47 7370 63 21632
16 244 32 1814 48 7966 64 22924

Table 1: Number of binary words an of length n avoiding xxxR

Theorem 1. Let z ∈ K. Then there exists a constant C such that z can be
written

z = ph(u)st

where |p|, |s| ≤ C, u ∈M, and t ∈ (ε+ 1)(01)∗(ε+ 1).

Proof. Word z cannot contain 000 or 111 as a factor, so write z = f(v) where
v ∈ {ab, ad, cb, cd}∗, and

f : a 7→ 0, b 7→ 1, c 7→ 00, d 7→ 11.

Write v = prs where r is a maximal string of alternating a’s and b’s in v;
thus r lies in (ε + b)(ab)∗(ε + a). If |s| ≥ 2, then we claim that |r| = 1 or
|pr| < 3. For suppose that |r| ≥ 2, |pr| ≥ 3 and |s| ≥ 2. Let s1, s2 be the
first two letters of s. Then s1 must be c or d; otherwise, rs1 is an alternating
string of a’s and b’s that is longer than r. Suppose s1 = c. (The other case
is similar.) Since |r| ≥ 2 and |pr| ≥ 3, we conclude that prs1s2 has yabcs2 as
a suffix, some y ∈ {b, d}. But then z contains a factor f(yabcs2), which has a
factor 1f(abc)1 = 101001 = xxxR, where x = 10. This is impossible.

If ab or ba is a factor of v, we can write v = prs as above, with |r| ≥ 2.
This implies that |s| ≤ 1 or |pr| ≤ 2. If |pr| ≤ 2, then p = ε, |r| = 2, since
|r| ≥ 2; in this case pr = ab. If |s| ≤ 1, then, since z ends in 1, either s = ε or
s = d. In the first case, ab is a suffix of v; in the second ad is a suffix. It follows
that every instance of ab or ba in v either occurs in a prefix of length 2, or in a
suffix of the form (ε+ b)(ab)∗(ε+ ad). The given suffix maps under f to a suffix
t ∈ (ε+ 1)(01)∗(ε+ 1) of z. We therefore can write z = p1z1t such that |p1| ≤ 2,
and z1 = f(v1), for some v1 ∈ {ad, cb, cd}∗ where ba is not a factor of v1.
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Write v1 = prs where r is a maximal string of alternating c’s and d’s in
v1. First of all, note that |r| < 7; we check that f(cdcdcdc) contains xxxR with
x = 0f(d)0, and, symmetrically, f(dcdcdcd) contains xxxR with x = 1f(c)1. We
claim that |r| < 3 or |pr| < 7. For otherwise, suppose that |r| ≥ 3, and |p′r| = 7,
where p′ is a suffix of p. Assume that the first letter of r is c. (The other case is
similar.) Since |r| < 7, p′ 6= ε. Since r is maximal, the last letter of p′ is a b. If
|p′| = 1, then f(p′r) = f(bcdcdcd), which contains xxxR with x = 1f(c)1; this
is impossible. If |p′| ≥ 2, then cb is a suffix of p′ (since ab is not a factor of v1).
However, then p′r contains the factor cbcdc, and f(cbcdc) = 001001100 = xxxR,
where x = 001, so this is also impossible. It follows that every instance of cdc
or dcd in v1 occurs in a prefix of v1 of length 6. Removing a prefix p′ of length
at most 7 from v1 then gives a suffix v2, such that the first letter of v2 is a or
c, and neither of cdc and dcd is a factor of v2. We can thus write z = p2z2t
where z2 = f(v2), v2 ∈ {ad, cb, cd}∗, words ba, cdc, dcd are not factors of v2,
and |p2| ≤ |p1|+ |f(p′)| ≤ 2 + 2(7)− 1 = 15. (Here, at most 6 letters of p′ can
be c or d, since cdcdcdc and dcdcdcd lead to instances of xxxR.)

Suppose that v′ is any factor of v2 of length 8. We claim that v′ contains
one of cd or dc as a factor. Since v′ /∈ {a, b}∗, one of c and d is a factor of v′.
Suppose then that c is a factor of v′. (The other case is similar.) Suppose that
neither of cd nor dc is a factor of v′. It follows that v′ is bcbcbcbc or cbcbcbcb;
each of these contains cbcbcbc, and f(cbcbcbc) contains 010010010 = xxxR where
x = 010.

We may thus write v2 = p′ (
∏n

i=0 ai) s
′, with n ≥ −1, |p′|, |s′| ≤ 7, such that

each ai begins and ends with c or d, and neither of cd or dc is a factor of any
ai. By n = −1 we allow the possibility that the product term is empty. As
a convention, we write the product as empty if |v2|cd + |v2|dc ≤ 1; for i ≥ 0,
then the last letter of p′ and the first letter of s′ are in {c, d}. Suppose n ≥ 0.
Consider ai, i ≥ 0. Without loss of generality, let ai begin with c. The letter
preceding ai is either the last letter of ai−1, or the last letter of p′, and must be
a d. We cannot have |ai| = 1, which would force ai = c; word ai is then followed
by the first letter of ai+1 or of s′, which must be d. Then dcd is a factor of
v2, which is impossible. Thus |ai| ≥ 2. Since cd is not a factor of ai, ai begins
with cb. Since ai ends with c or d (not in b), ai 6= cb, so that |ai| ≥ 3. Since
ba is not a factor of v2, ai therefore begins with cbc. If ai 6= cbc, then, since cd
is not a factor of ai, word ai begins with cbcb, and arguing as previously, with
cbcbc. If cbcbc is a proper prefix of ai, then ai begins with cbcbcb. However,
f(cb)30 contains an instance of xxxR, so this is impossible: If ai begins with
c, then ai ∈ {cbc, cbcbc}. By the same reasoning, if ai begins with d, then
ai ∈ {dad, dadad}.

Let v3 = (p′)−1v2(s′)−1 =
∏n

i=0 ai. Deleting up to the first 5 letters, if
necessary, we assume that a0 ∈ {cbc, cbcbc} (i.e., if a0 begins with dad or dadad,
then delete these letters). Then z = p3z3s3t where z3 = f(v3), |p3| ≤ |f(p′)| +
|p2| + 5 ≤ 2(4) + 3 + 15 + 5 = 31, |s3| = |f(s′)| ≤ 2(4) + 3 = 11. Here we use
the fact that at most 4 of the letters of p′ or s′ can be in {c, d}; otherwise the
pigeonhole principle would force an occurrence of cd or dc in one of these.

We can write v3 in the form g(u) where u ∈ {S,L}∗. Here write u =
∏m

i=0 ui,
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each ui ∈ {S,L}, and let g be the transducer

g(ui) =


cbc ui = S and i even

dad ui = S and i odd

cbcbc ui = L and i even

dadad ui = L and i odd.

Thus z3 has the form h(u) where h is the transducer

h(ui) =


00100 ui = S and i even

11011 ui = S and i odd

00100100 ui = L and i even

11011011 ui = L and i odd.

We have thus proved the theorem with C = max(31, 11) = 31.

To study the growth rate of K, it thus suffices to study the growth rate of
M.

The transducer h is sensitive to the index of a word modulo 2; thus, suppose
r, s ∈ {S,L}∗ and r is a suffix of s. If |r| and |s| have the same parity, then
h(r) is a suffix of h(s). However, if |r| and |s| have opposite parity, then h(r) is
a suffix of h(s). (Here the overline indicates binary complementation.)

3. Suitable pairs of words

Let S,L ∈ {S,L}∗. Say that the pair 〈S,L〉 is suitable if

1. |S|, |L| are odd.

2. There exist non-empty `, µ, p ∈ {0, 1}∗ such that

(a) h(L) = ``R

(b) h(S) = `µ = µR`R

(c) h(L) = `µµRp

We see that 〈S,L〉 is suitable; specifically, we could choose µ = 0, ` = 0010,
p = 00.

Since |S|, |L| are odd, the transducer h is sensitive to the index of a word
modulo 2, where lengths (and indices) are measured in terms of S and L; i.e., if
we use length function ||w|| = |w|S + |w|L; thus, suppose r, s ∈ {S,L}∗ and r is
a suffix of s. If ||r|| and ||s|| have the same parity, then h(r) is a suffix of h(s).
However, if ||r|| and ||s|| have opposite parity, then h(r) is a suffix of h(s).

Lemma 2. Let S,L ∈ {S,L}∗. Suppose that 〈S,L〉 is suitable.

1. Word h(L)p−1 is a prefix of h(SS).

2. Word h(S) is both a prefix and suffix of h(L).
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Proof. The first of these properties is immediate from property 2(c) of the def-

inition of suitability. For the second, we see that h(L) = `µµRp = µR`RµRp =
pRµ`µ (in the last step we use the fact that h(L) = h(L)R).

Now suppose that S and L are fixed and 〈S,L〉 is suitable. Define morphism
Φ : {S,L}∗ → {S,L}∗ by Φ(S) = SL, Φ(L) = SLL.

Morphism Φ is conjugate to the square of the Fibonacci morphism D, where
D(L) = LS, D(S) = L; namely, Φ = L−1D2L. This implies that for k ≥ 1
||Φk(S)|| = F2k+1, ||Φk(L)|| = F2k+2, where Fk is the kth Fibonacci number,
counting from F1 = F2 = 1.

Lemma 3. Let β ∈ {S,L}∗. Then

1. h(Φ(Sβ)) is a prefix of h(Φ(Lβ)) and h(Φ2(Sβ)) is a prefix of h(Φ2(Lβ)).

2. h(Φ(Sβ)) is a suffix of h(Φ(Lβ)).

3. h(Φ2(Sβ)) is a suffix of h(Φ2(Lβ)).

4. h(Φ(L))p−1 is a prefix of h(Φ(SS)).

5. h(Φ2(L))(p)−1 is a prefix of h(Φ2(SS)).

Proof. Since Φ(S) is a prefix of Φ(L), Φ(Sβ) is a prefix of Φ(Lβ), so that
h(Φ(Sβ)) is a prefix of h(Φ(Lβ)). Similarly, h(Φ2(Sβ)) is a prefix of h(Φ2(Lβ)),
establishing (1).

Since S is a suffix of L, we see that Φ(S) is a suffix of Φ(L). Because |Φ(L)|
is odd, while |Φ(S)| is even, it follows that h(Φ(S)) is a suffix of h(Φ(L)). More
generally, if β ∈ {S,L}∗, h(Φ(Sβ)) is a suffix of h(Φ(Lβ)), establishing (2). The
proof of (3) is similar.

For (4), h(Φ(L))p−1 = h(SLL)p−1 = h(SL)h(L)p−1, which is a prefix of
h(SL)h(SS), which is in turn a prefix of h(SL)h(SL) = h(Φ(SS)).

For (5), h(Φ2(L))(p)−1 = h(Φ(SL)Φ(L))(p)−1 = h(Φ(SL))h(Φ(L))p−1 (since
|Φ(SL)| is odd), which is a prefix of h(Φ(SL))h(Φ(SS)) = h(Φ(SL)Φ(SS)),
which is in turn a prefix of h(Φ(SLSSL)) = h(Φ2(SS)).

In order to count the words in which we are interested, we prove a sequence
of lemmas, ending with the structure result, Lemma 8. This lemma, and the
lemmas leading up to it are very technical; roughly speaking, they consider
the structure of sets which are ‘almost’ Φ−1(M), Φ−2(M) and Φ−3(M). We
exclude certain words b from these sets, on the basis that (variously) h(Φ(b)),
h(Φ2(b)), h(Φ3(b)) contain instances of xxxR.

Define the set B ⊆ {S,L}∗:

B = (S + L)SSSL(L+ SS + SL) ∪ LSSL(L+ SS + SL) ∪ (S + L)LLLLL(S + L)

∪(S + L)LSLLL(S + L)

∪Φ((S + L)SS(S + L)) ∪ Φ((S + L)LLLSL(L+ SS + SL))

∪Φ2(LLL(S + L)) ∪ Φ2((S + L)LSS(S + L)) ∪ Φ2((S + L)SSSSS(S + L))

Lemma 4. Let u ∈M. Then no word of B is a factor of u.
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Proof. It suffices to show that for each word b ∈ B, h(b) contains a non-empty
factor xxxR. B is written as a union, and we make cases based on which piece
of the union b belongs:

b ∈ (S+L)SSSL(L+SS+SL): In this case, it suffices to show that h(SSSSLL)(p̄)−1

contains a non-empty factor xxxR, because of the results of Lemma 2. In par-
ticular, h(SSSSLL)(p̄)−1 is a suffix of h(LSSSLL)(p̄)−1, which is a prefix of
h(LSSSLSS), which is a prefix of h(LSSSLSL). Again, h(SSSSLL)(p̄)−1 is
a prefix of h(SSSSLSS), which is a prefix of h(SSSSLSL). Now

h(SSSSLL)(p̄)−1

= (`µ)(µR`R)(`µ)(µR`R)(``R)(`µµR)

= `µµR`R`µµR`R``R`µµR

= ` µµR`R` µµR`R` `R`µµR

which contains an instance of xxxR with x = µµR`R`.

b ∈ LSSL(L + SS + SL): In this case, it suffices to show that h(LSSLL)p−1

contains a non-empty factor xxxR, because of the results of Lemma 2. But

h(LSSLL)p−1

= (pµµR`R)(`µ)(µR`R)(``R)(`µµR)

= pµµR`R`µµR`R``R`µµR

= p µµR`R` µµR`R` `R`µµR

which contains the instance xxxR with x = µµR`R`.

b ∈ (S + L))L5(S + L): In this case, it suffices to show that h(SL5S) contains
a non-empty factor xxxR, because of the results of Lemma 2. But

h(SL5S)

= (µR`R)(``R)(``R)(``R)(``R)(``R)(`µ)

= µR`R``R``R``R``R``R`µ

= µR `R``R` `R``R` `R``R` µ

which contains the instance xxxR with x = `R``R`.

b ∈ (S+L)LSLLL(S+L) : In this case, it suffices to show that h(SLSLLLS)
contains a non-empty factor xxxR, because of the results of Lemma 2. Here

h(SLSLLLS)

= (`µ)(``R)(`µ)(``R)(``R)(``R)(µR`R)

= `µ``R`µ``R``R``RµR`R

= ` µ``R` µ``R` `R``RµR `R

7



which contains the instance xxxR with x = µ``R`.

b ∈ Φ((S+L)SS(S+L)) : In this case, it suffices to show that h(Φ(SSSS))
contains a non-empty factor xxxR, because of the results of Lemma 3. In
particular, h(Φ(SSSS)) is a prefix of h(Φ(SSSL)), h(Φ(SSSS)) is a suffix of
h(Φ(LSSS)), and h(Φ(SSSL)) is a suffix of h(Φ(LSSL)). However,

h(Φ(SSSS))

= (µR`R``R)(µR`R``R)(µR`R``R(µR`R``R)

= µR`R` `RµR`R` `RµR`R` `RµR`R` `R

containing an instance of xxxR, with x = `RµR`R`.

b ∈ Φ((S + L)LLLSL(L+ SS + SL)) : In this case, it suffices to show that
h(Φ(SLLLSLL))p−1 contains a non-empty factor xxxR, because of the results
of Lemma 3. But

h(Φ(SLLLSLL))p−1

= (µR`R``R)(µR`R``R``R)(µR`R``R``R)(µR`R``R``R)(µR`R``R)(`µ``R``R)(`µ``R`µµR)

= µR `R``RµR`R``R``RµR`R` `R``RµR`R``R``RµR`R` `R`µ``R``R`µ``R` µµR

an instance of xxxR with x = `R``RµR`R``R``RµR`R`.

b ∈ Φ2(LLL(S + L)) : In this case, it suffices to show that h(Φ2(LLLS))
contains a non-empty factor xxxR, because of the results of Lemma 3. But

h(Φ2(LLLS))

= (`µ``R`µ``R``R`µ``R``R)(`µ``R`µ``R``R`µ``R``R)(`µ``RµR`R``R``RµR`R``R``R)

(µR`R``R`µ``R``R)

= `µ` · `R`µ``R``R`µ``R``R`µ` · `R`µ``R``R`µ``R``R`µ` · `RµR`R``R``RµR`R``R``RµR`R`

·`R`µ``R``R

containing an instance of xxxR, with x = `R`µ``R``R`µ``R``R`µ`.
b ∈ Φ2((S+L)LSS(S+L)) : In this case, it suffices to show that h(Φ2(SLSSS))

contains a non-empty factor xxxR, because of the results of Lemma 3. Now

h(Φ2(SLSSS))

= (`µ``R`µ``R``R)(`µ``R`µ``R``R`µ``R``R)(`µ``R`µ``R``R)(`µ``RµR`R``R``R)

(µR`R``RµR`R``R``R)

= `µ``R`µ` · `R``R`µ``R`µ``R``R`µ` · `R``R`µ``R`µ``R``R`µ`
·`RµR`R``R``RµR`R``RµR`R``R` · `R
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containing an instance of xxxR, with x = `R``R`µ``R`µ``R``R`µ`.

b ∈ Φ2((S + L)SSSSS(S + L)) : In this case, it suffices to show that
h(Φ2(S7)) contains a non-empty factor xxxR, because of the results of Lemma 3.
Finally,

h(Φ2(S7))

= (`µ``R`µ``R``R)(`µ``RµR`R``R``R)(`µ``R`µ``R``R)(`µ``RµR`R``R``R)

(`µ``R`µ``R``R)(`µ``RµR`R``R``R)(`µ``R`µ``R``R)

= `µ` · `R`µ``R``R`µ``RµR`R``R``RµR`R` · `R`µ``R``R`µ``RµR`R``R``RµR`R`

·`R`µ``R``R`µ``RµR`R``R``RµR`R` · `RµR`R``R``R

containing an instance of xxxR, with x = `R`µ``R``R`µ``RµR`R``R``RµR`R`.

4. Parsing words of M using Φ

Lemma 5. Let y ∈ {S,L}∗ ∩M. Then y can be written

y = p1Φ(y1)s1t1,

where |p1|, |s1| ≤ 9, y1 ∈ {S,L}∗, and t1 ∈ (ε+S+S2+S3)LS∗+S∗(ε+L+LS).
(Here all lengths are as words of {S,L}∗; thus, for example |p1| = |p1|L+ |p1|S .)

Proof. Suppose that |y|L = n. If n = 0, the lemma is true, letting t1 = y. If
n = 1, write y = SkLSj . Since by Lemma 4, SSSSLSS cannot be a factor of
y ∈M, we have k ≤ 3 or j ≤ 1; thus we can again let t1 = y, and we are again
done.

Suppose from now on, that n ≥ 2, and write y = (
∏n

i=1 SmiL)Smn+1 , where
each mi ≥ 0. For 1 ≤ i ≤ n − 1, word LSmi+1L has one of LL, LSL or LSS
as a prefix, depending on whether mi+1 = 0, 1 or mi+1 ≥ 2, respectively. This
implies that for 1 ≤ i ≤ n− 1, we have mi ≤ 3, since by Lemma 4, no word of
S4(LL + LSL + LSS) can be a factor of y ∈ M. For 2 ≤ i ≤ n − 1, we have
mi ≤ 1, since no word of L(S2 +S3)(LL+LSL+LSS), can appear in y. Since
S4LS2 cannot be a factor of y ∈ M, if mn+1 ≥ 2, then mn ≤ 3. We have thus
established that

y ∈ (ε+ S + S2 + S3)L ((ε+ S)L)
∗ (

(ε+ S + S2 + S3)LSSS∗ + S∗L(ε+ S)
)

Write y = p′y′t1, where

p′ ∈ (ε+ S + S2 + S3), y′ ∈ L ((ε+ S)L)
∗
,

t1 ∈ (ε+ S + S2 + S3)LSSS∗ + S∗L(ε+ S).

In particular, SS is not a factor of y′.

9



Without loss of generality, suppose |y| ≥ 7 and |y′| ≥ 6. (If |y| ≤ 6 or |y′| ≤ 5,
let p1 = p′y′, y1 = s1 = ε, and the lemma holds. Write y′ = p′′y′′s1, where
|p′′| = 4, |s1| = 2. We next consider the placement in y, y′, y′′ of hypothetical
factors Lk, k ≥ 3:

• Lk, k ≥ 6, cannot be a factor of y: If L6 is a factor of y, so is one of SL6,
L6S or L7, since |y| ≥ 7; this is impossible.

• L5 can only appear in y as a prefix or suffix: Otherwise, y contains some
two-sided extension of L5. As L6 is not a factor of y, this must be SL5S.
This is impossible by Lemma 4.

• L4 is not a factor of ρy′′σ, where ρ is the last letter of p′′ and σ is the first
letter of s1: The length 5 left extension of an occurrence of L4 in ρy′′σ
cannot be L5 because of the previous paragraph; it must be SL4. Since
SS is not a factor of y′, the further left extension LSL4 must thus also
be a factor of y′. However, this forces y′ to contain one of the further left
extensions LLSL4 and SLSL4, which is impossible.

• L3 is not a factor of y′′: Suppose that L3 is a factor of y′′. By the previous
paragraph, its extension SL3S is a factor of ρy′′σ. Since SS is not a factor
of y′, the extension of SL3S to LSL3S must be a factor of y′. One of the
further left extensions LLSL3S and SLSL3S must thus occur in y′, but
these are impossible by Lemma 4.

We have now shown that neither of S2 and L3 can be a factor of y′′. Thus

y′′ ∈ (L+ LL)(SL+ SLL)∗.

Let p′′′ be the longest prefix of y′′ of the form Lk, and write y′′ = p′′′y1. Letting
p1 = p′p′′p′′′, we have |p1| ≤ 3 + 4 + 2, so the lemma holds.

5. Parsing words of M using Φ2

Lemma 6. Let y1 ∈ {S,L}∗, such that Φ(y1) ∈M. Then y1 can be written

y1 = p2Φ(y2)s2t2,

where |p2|, |s2| ≤ 4, y2 ∈ {L,S}∗ and

t2 ∈
(
(ε+ L+ L2 + L3)SL∗ + L∗(ε+ S + SL)

)
(ε+ S + L).

Proof. From Lemma 4, no word of

(S + L)SS(S + L) ∪ (S + L)LLLSL(L+ SS + SL)

∪Φ(LLL(S + L)) ∪ Φ((S + L)LSS(S + L)) ∪ Φ((S + L)SSSSS(S + L))

can appear in y1. This includes all length 4 two-sided extensions of SS; it
follows that SS can only appear in y1 as a prefix or suffix.
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If |y1| ≤ 1, we are done. In this case, let p2 = y1, y2 = s2 = t2 = ε.
Therefore, we will assume that |y1| ≥ 2, and write y1 = p′y′s′, |p′| = |s′| = 1.
Then SS is not a factor of y′.

Suppose that |y′|S = n. If n = 0, the lemma is true, letting p2 = p′,
y2 = s2 = ε, t2 = y′s′. If n = 1, write y′ = LkSLj . Since L4SL2 is not a factor
of y1, k ≤ 3 or j ≤ 1; thus we can let p2 = p′, t2 = y′s′, and we are again done.

Suppose from now on, that n ≥ 2, and write y′ = (
∏n

i=1 LmiS)Lmn+1 , where
each mi ≥ 0. For 1 ≤ i ≤ n − 1, mi+1 ≤ 1, since SS is not a factor of y′. It
follows that for 1 ≤ i ≤ n − 2 SLmi+1SLmi+2 has one of SLSL or SLL as a
prefix. This implies that for 1 ≤ i ≤ n− 2, we have mi ≤ 3, since L4SLSL and
L4SLL are not factors of y1. In fact, for 2 ≤ i ≤ n− 2, we have mi ≤ 2, since
SL3SLSL and SL3SLL are not factors of y1. We have thus established that

y′ ∈ (ε+ L+ L2 + L3) (SL+ SLL)
∗ SLjSLk

Since L4SL2 is not a factor of y1, we require k ≤ 3 or j ≤ 1. Write y′ = p′′y2St′′
where p′′ ∈ (ε+L+L2 +L3), y2 ∈ (SL+ SLL)

∗
, t′′ ∈ SLkSLj , k ≤ 3 or j ≤ 1.

Let p2 = p′p′′, s2 = S, t2 = t′′s′. The lemma is established.

6. Parsing words of M using Φ3

Lemma 7. Let y2 ∈ {S,L}∗ such that Φ2(y2) ∈M. Then y2 can be written

y2 = p3Φ(y3)s3,

where |p3|, |s3| ≤ 6, y3 ∈ {L,S}∗.

Proof. From Lemma 4, no word of

LLL(S + L) ∪ (S + L)LSS(S + L) ∪ (S + L)SSSSS(S + L)

can appear in y2. These include both of the length 4 right extensions of LLL;
it follows that LLL can only appear in y2 as a suffix. They also include all of
the length 5 two-sided extensions of LSS; Thus LSS can appear in y2 only as
a prefix or suffix. Finally, they include all length 7 two-sided extensions of S5.
Thus, S5 can only appear in y2 as a suffix or prefix. If |y2| ≤ 4, we are done.
Assume that |y2| ≥ 5, and write y2 = p′y′s′, |p′| = 4, |s′| = 1. Then LLL is not
a factor of y′. We also claim that SS is not a factor of y′. Otherwise, y2 has a
factor ρSS which is not a suffix, with |ρ| = 4. However, the length 5 suffix of
ρSS is not a prefix or suffix of y2, and contains either S5 or LSS as a factor;
this is impossible.

Since neither of L3 or S2 is a factor of y2, we have y′ ∈ (ε+ L+ L2)(SL+
SLL)∗(ε + S), and can write y′ = LkΦ(y3)Sj where k ≤ 2, s ≤ 1. The lemma
therefore holds.
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7. A hierarchy of S’s and L’s

Combining Lemmas 5 through 7 gives the following:

Lemma 8. Let y ∈ {S,L}∗ ∩M. Then y can be written

y = p1Φ(p2Φ(p3Φ(y3)s3)s2t2)s1t1,

where |p1|, |s1| ≤ 9, |p2|, |s2| ≤ 4, |p3|, |s3| ≤ 6, and

t1 ∈ (ε+ S + S2 + S3)LS∗ + S∗(ε+ L+ LS),

t2 ∈
(
(ε+ L+ L2 + L3)SL∗ + L∗(ε+ S + SL)

)
(ε+ S + L).

Corollary 9. Let y ∈ {S,L}∗ ∩M. Then there is a constant κ such that y can
be written

y = πΦ3(y3)σ,

where σ can be written σ1Φ(Lj)σ2Skσ3, with |πσ1σ2σ3| ≤ κ.

Lemma 10. Suppose that 〈S,L〉 is suitable, and |h(S)| is odd, |h(L)| even. Let

Σ = (SLSL)−1Φ3(S)SLSL, Λ = (SLSL)−1Φ3(L)SLSL.

Then 〈Σ,Λ〉 is suitable, and |h(Σ)| is odd, |h(Λ)| even.

Proof. Each of |Σ|, |Λ| is odd. Let

ˆ̀= h(LSLSLLSLLS)`, µ̂ = `Rh(SL), p̂ = ˆ̀Rh(LSLSL)

h(Σ) = h((SLSL)−1Φ3(S)SLSL)

= h((SLSL)−1SLSLLSLSLLSLLSLSL)

= h(LSLSLLSLLSLSL)

= h(LSLSLLSLLS)``Rh(SL)

= ˆ̀µ̂

For a word z ∈ {S,L}∗ with |z| even, we observe that h(zR) = (h(z))R. There-
fore, we also have

Σ = h(LSLSLLSLLSLSL)

= h(LS)h(L)h(SLLSLLSLSL)

= (h(SL))R``R (h(LSLSLLSLLS))
R

= µ̂R ˆ̀R

Further,
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h(Λ) = h((SLSL)−1Φ3(L)SLSL)

= h((SLSL)−1SLSLLSLSLLSLLSLSLLSLLSLSL)

= h(LSLSLLSLLSLSLLSLLSLSL)

= h(LSLSLLSLLS)h(L)h(SLLSLLSLSL)

= h(LSLSLLSLLS)` `R (h(LSLSLLSLLS))
R

= ˆ̀̀̂ R

Finally,

h(Λ) = h(LSLSLLSLLS)` `Rh(SLLSLLSLSL)

= h(LSLSLLSLLS)` `Rh(SL) h(LS) h(L)h(LSLSL)

= h(LSLSLLSLLS)` `Rh(SL) h(LS) ˆ̀ ˆ̀Rh(LSLSL)

= ˆ̀µ̂µ̂Rp̂.

This result combines with Corollary 9 to allow us to parse words ofM. Let
L0 = L, S0 = S. Supposing that 〈Si, Li〉 is suitable, let L = Li, S = Si, and

Li+1 = (SiLiSiLi)
−1Φ3(Li)SiLiSiLi, Si+1 = (SiLiSiLi)

−1Φ3(Li)SiLiSiLi.

Since 〈S,L〉 is suitable, all of the pairs 〈Si, Li〉 will be suitable by Lemma 10.
Suppose y ∈ {S,L}∗∩M. By repeatedly applying Corollary 9, we write y = π̂υσ̂
where υ ∈ {Si, Li}∗.

8. Upper bound on growth rate

If H is a language, denote by #(H,n) the number of words of H of length
n. If N0 is a positive integer, the statements

For n > 1, #(H, n) ≤ nlgn+o(lgn). (1)

and
For n > N0, #(H, n) ≤ nlgn+o(lgn). (2)

are equivalent; let K = 1 + maxn≤N0 #(H, n). Suppose that for n > N0,
#(H, n) ≤ nlgn+o(lgn). Then for n > 1,

#(H, n) ≤ Knlgn+o(lgn)

= nlgn+o(lgn)+logn K

≤ nlgn+o(lgn).

Define
N = {z ∈ {0, 1}∗ : z avoids xxxR}.
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Theorem 11. For n > 1, #(N , n) ≤ nlgn+o(lgn).

Recall that
K = {z ∈ 0{0, 1}∗1 : z avoids xxxR}.

Suppose that for n > 1, we have #(K, n) ≤ nlgn+o(lgn). Then, since neither of
000 and 111 can be a factor of a word of N ,

N ⊆ (ε, 1, 11)K(ε, 0, 00)

so that for n > 5,

#(N , n) ≤ #(K, n) + 2#(K, n− 1) + 3#(K, n− 2) + 2#(K, n− 3) + #(K, n− 4)

≤ 9nlgn+o(lgn)

≤ nlgn+o(lgn)

where the last inequality uses 9 ≤ nlogn 9 = no(lgn) to absorb the 9 into the
no(lgn) term. Replacing N0 = 5 by 1, it follows that for n > 1, #(N , n) ≤
nlgn+o(lgn).

It remains to show that for n > 1, #(K, n) ≤ nlgn+o(lgn).
Let T = (ε+ 1)(01)∗(ε+ 1). Thus

#(T, n) =

{
1, n ≤ 1

2, n ≥ 2.

Let C be the constant from Theorem 1, and let P be the set of binary words
of length C or less. From Theorem 1, each word k of K has the form ph(w)st
where p, s ∈ P, w ∈M and t ∈ T .

Suppose that we can show that for n > 1, #(M, n) ≤ nlgn+o(lgn). Since
8|w| ≥ |h(w)| ≥ 5|w|, if |k| = n, then n/8 ≤ |w| ≤ n/5. Thus, if n > 8, then
|w| ≥ n/8 > 1 and #(M, |w|) ≤ |w|lg |w|+o(lg |w|), so that there are at most
(n/5)lg(n/5)+o(lg(n/5)) choices for w. There are at most 2C+1 choices for each of
p and s, and once p, s and w are chosen, there are at most 2 choices for t. In
total,

#(K, n) ≤ 2C+1(n/5)lg(n/5)+o(lg(n/5))2C+12

≤ 22C+3nlgn+o(lgn)

≤ nlgn+o(lgn)

where the last inequality uses 22C+3 ≤ n2C+3 = no(lgn) to absorb 22C+3 into
the no(lgn) term. Replacing N0 = 8 by 1, it follows that for n > 1, #(K, n) ≤
nlgn+o(lgn).

We have thus reduced the proof of Theorem 11 to the following:

Theorem 12. For n > 1, #(M, n) ≤ nlgn+o(lgn).
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Proof. Let y ∈ M have length n. Choose 〈S,L〉 = 〈S,L〉. Then iteration of
Corollary 9 gives

y = p1Φ3(p2Φ3(p3 · · · pmΦ3(ε)sm · · · s3)s2)s1,

where m ≤ (lg n)/3. For i ∈ {1, · · · ,m} we have

si = σ1,iΦ(Lji)σ2,iSkiσ3,i

Since |piσ3,iσ2,iσ1,i| ≤ κ, there is a constant α such that there are at most α
choices for (pi, σi,3, σi,2, σi,1). This gives a number of choices for {(pi, σi,3, σi,2, σi,1)}mi=1

which is polynomial in n.
This leaves the problem of bounding the number of choices of the ji and ki.
We have

n ≥ |Φ3(Φ3(· · ·Φ3(ε)Φ(Ljm)Skm · · ·Φ(Lj3)Sk3)Φ(Lj2)Sk2)Φ(Lj1)Sk1 |

=

m∑
i=1

(
ji|Φ3i−2(L)|+ ki|Φ3i−3(S)|

)
=

m∑
i=1

(jiF6i−2 + kiF6i−5)

It follows that the number of choices for the ji, ki is less than or equal to the
number of partitions (with repetition) of n with parts chosen from {F3i+1}∞i=0.
Since F3i+1 ≥ 2i, this is less than or equal to the number of partitions of n into
powers of 2. Mahler [8] showed that the number p(n, r) of partitions of n into
powers of r satisfies

lg p(n, r) ∼ lg2 n

lg2 r
;

thus, p(n, 2) ∼ nlgn+o(lgn). The result follows.

9. Lower bound on growth

Let ψ : {S,L}∗ → {S,L}∗ be given by

ψ(S) = LSL,ψ(L) = LSLSL.

Since ψ(S), ψ(L) are palindromes, we have

ψ(uR) = (ψ(u))R, u ∈ {S,L}∗.

Letting 〈S,L〉 = 〈S,L〉, we find that ψ = (LSL)−1D3LSL. It follows that
|ψk(S)| = F3k+1, |ψk(L)| = F3k+2.

Define languages Li by

L0 = LS∗,Li+1 = ψ(Li)LS
∗.
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Let L = ∪∞i=0Li.
A word w ∈ L has the form

w = ψ(ψ(ψ(· · ·ψ(ψ(LSkm)LSkm−1) · · · )LSk2)LSk1)LSk0

so that the number of words of L of length n is the number of partitions of n
of the form

n =

m∑
i=0

(F3i+2 + kiF3i+1) .

Since Fi+1 ≤ 2i, this is greater than or equal to the number of partitions of n
of the form

n =

m∑
i=0

(
23i+1 + ki2

3i
)
,

which is greater than or equal to the number of partitions of n of the form

n =

m∑
i=0

(ki + 1)23i+1.

This, in turn, is at least half of the number of partitions of n of the form

n =

m∑
i=0

ki2
3i+1,

which is the number of partitions of n/2 of the form

n/2 =

m∑
i=0

ki8
i.

Following Mahler [8], this is p(n/2, 8) ∼ nlgn+o(lgn). We will show that no
word of h(L ) has a non-empty factor xxxR, so that this gives a lower bound
on N .

One checks the following:

Lemma 13. No word of L has any of the following factors:

L3, SSL, SLSLS,LSLSLLSLSLLSLSL = ψ(L3), LLSLLSLLSLSL

LSLLSLSLLSLLSLSLLSL = ψ(SLSLS).

Theorem 14. No word of h(L ) contains a non-empty word of the form xxxR.

Proof. Suppose w ∈ L , and xxxR is a non-empty factor of h(w). Let

W =
(

(h(S) + h(L))(h(S) + h(L))
)∗

= ((00100 + 00100100)(11011 + 11011011))
∗
.
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Thus h(w) is a factor of a word of W . Note that none of 000, 111, 0101, 1010,
001011, 110011, 010010010, is a factor of any word of W , nor thus, of w. Also,
` = 0010 is always followed by 01 in any word of W , while `R = 1011 is always
preceded by 01.

If |x| ≤ 2, then h(w) contains a factor 000, 111, 010110 or 101011. The last
two contain 0101, so this is impossible. Assume therefore that |x| ≥ 3 and write
x = x′αβγ, where α, β, γ ∈ {0, 1}. Then αβγγβα is a factor of xxxR. Suppose
that γ = 0. (The other case is similar.) Since 000 is not factor of w, we can
assume that β = 1. Since 110011 is not a factor of w, αβγ = 010. If |x| = 3,
then xxxR is 010010010, which is not a factor of w. We conclude that |x| ≥ 4.
Since 1010 is not a factor of w, ` = 0010 is a suffix of x. Write x = x′′`, so that

xxxR = x′′`x′′``R(x′′)R = x′′`x′′h(L)(x′′)R.

Since x′′`x′′ precedes h(L) in a word of W , the length 4 suffix of x′′`x′′ must
be 1011; since x′′ follows ` in h(w), it follows that x′′ begins with 0. Therefore,
|x′′| ≥ 5. It follows that x′′ must end with 11011, so that, in fact, |x′′| ≥ 6, and
011011 is a suffix of x′′. If |x′′| = 6, then

xxxR = 0110110010 0110110010 0100110110 = 011011h(SSL)110110.

This forces SSL to be a factor of w, which is impossible, since w ∈ L . Thus
|x′′| ≥ 7.

Since 0101 is not a factor of w, if suffix 011011 of x′′ is preceded by 1, it is
preceded by 11, and h(L)` is a suffix of x. This forces xxR to have

h(L)``Rh(L)R = h(L)h(L)h(L)

as a factor, forcing LLL to be a factor of w, which is impossible. We conclude
that 0011011 is a suffix of x′′. Since x′′ follows ` in w, 01 must be a prefix of x′′.
Suppose 011 is a prefix of x′′. Since 0011011 is a suffix, then x′′`x′′ has factor

0011011`011 = 00h(S)h(S)11

and w has a factor SSuL for some u; this is impossible. We conclude that 010
is a prefix of x′′; since 0101 is not a factor of w, in fact, 0100 = `R is a prefix of
x′′. In total,

xxxR = `Rx̂` `Rx̂` `Rx̂R`

The ‘bracketing’ by ` and `R forces w to contain a factor uLuLuR, where |u| is
odd.

Consider the shortest factor uLuLuR or w, where |u| is odd.
If the last letter of u is L, then LLL is a central factor of uLu. This is

impossible. Thus S is a suffix of u. If u = S, then uLuLuR = SLSLS, which is
not a factor of any word of L . We conclude that |u| > 1, so that |u| ≥ 3, since
|u| is odd.

Since SSL is not a factor of w, the length 3 suffix of uL is LSL. This makes
LSLSL a central factor of uLuR. Since SLSLS is not a factor of w, the length
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3 suffix of u is LLS. If u = LLS, then Lu has prefix LLL, which is not a factor
of w. We conclude that |u| ≥ 5.

Since neither of LLL and SS is a factor of w, we conclude that LSLLS is the
length 5 suffix of u. If u = LSLLS, then uLuLuR = LSLLSLLSLLSLSLLSL,
with illegal factor LLSLLSLLSLSL. Thus |u| ≥ 7.

If the length 7 suffix of u is LSLSLLS, then a central factor uLuR is
LSLSLLSLSLLSLSL, which is not a factor of w. We conclude that the length
7 suffix is SLLSLLS.

Write w = ψ(v)LSk for some v ∈ L , some k ≥ 0. Since |w|L > 1, v 6= ε.
Then w has suffix LLSk, and prefix uLuLSL of uLuLuR must be a factor
of ψ(v). Let L(LSL)mL be a factor of uLu where m is as large as possi-
ble. Since uLuLSL has suffix LSLSL, and uLuLSL is a factor of ψ(v), word
L(LSL)mLSLSL must be a factor of uLuLSL. If m ≥ 2, then uLuLuR has
illegal factor LLSLLSLLSLSL. We conclude that m = 1, so that LLSLLSLL
is not a factor of uLu

In the context of uLu, word u follows the suffix LLSLLSL of uL. Therefore,
u cannot have L as a prefix or uLu contains the factor LLSLLSLL. It follows
that SL is a prefix of u. However, a prefix of u cannot be SLS; otherwise uLu
would have factor uLSLS which has illegal suffix SLSLS. It follows that the
length 3 prefix of u is SLL.

Write
u = SL : Lu′SL : LSL : LS

The colons indicate boundaries in u between instances of ψ(S) and ψ(L). Thus,
we may write u = SLψ(u′′)LS, for some word u′′ in L . Since |ψ(S)| ≡ |ψ(L)| ≡
1 (modulo 2), we have

|u| ≡ |ψ(u′′)| ≡ |u′′| (modulo 2).

Then

uLuLuR = SLψ(u′′)LSLSLψ(u′′)LSLSL(ψ(u′′))RLS

= SLψ(u′′Lu′′L(u′′)R)LS.

Recall that w = ψ(v)LSk. Although the suffix LS of uLuLuR may occur
here as a prefix of LSk, certainly uLuLuR(LS)−1 is in ψ(v). We conclude that
u′′Lu′′L(u′′)R is a factor of L , where u′′ has odd length shorter than u. This
is a contradiction.
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