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Abstract 

Elevated water temperature and dissolved carbon dioxide (CO2) are two environmental stressors 

that freshwater organisms face in the Anthropocene. Larval fishes are particularly susceptible to 

elevation in water parameters, as they are often confined to rearing habitats where temperature 

and CO2 are nearing species-specific maxima. In this study, 240 freshwater Japanese medaka 

(Oryzias latipes) eggs were exposed to either control conditions (27˚C, ~ 500 µatm  pCO2), 

elevated water temperature (36˚C), elevated CO2 (~1500  µatm  pCO2) or both elevated 

temperature and CO2 (36˚C, ~1500 µatm  pCO2).  Exposures were applied either during the 

early, middle or late developmental stages and the morphological and behavioural data was 

collected ten days post-hatch. I predicted that elevated temperature and CO2 would decrease 

hatching success, and produce abnormalities in the swim bladder, spine or heart. In addition, I 

predicted that fish exposed to the stressors would show a change in swimming behaviour. Of the 

behavioural parameters observed, a significant difference was found in the distance travelled 

among the larval fish exposed to the treatments. There was no significant change between 

treatments or time intervals for hatching success, length or morphology. As rising CO2 and 

warming are likely to have a consequential impact on freshwater species, further research 

dedicated to understanding the ramification of climate-induced stressors is imperative. 
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1. Introduction 

Anthropogenic CO2 emitted by human activity is one of the greatest contributors to ocean 

acidification and warming (McNeil and Matsumoto 2019). It is estimated that air temperature 

and atmospheric CO2 will increase between 2.6-4.8˚C and 420-940 ppm by 2100 (Collins et al., 

2013; Porter et al., 2014). A symptom of rising CO2 can be weak acidification in freshwater from 

CO2 uptake that results in a small change in environmental pH by one or two units (Hasler et al., 

2018); however, biochemical and geological processes local to water bodies will also contribute 

to the level of future acidification (McNeil and Matsumoto 2019). To date, research concerned 

with climate change and aquatic species has been focused more on marine than freshwater 

systems (Ou et al., 2015; Hasler et al., 2016a; Jesus et al., 2018). Furthermore, few studies have 

aimed to understand how both warming and elevated CO2 will influence freshwater biota (Hasler 

et al., 2016b; 2018).  Understanding how temperature and CO2 paired as stressors influence 

freshwater biota is imperative to predict future responses of biological communities to 

environmental change.  

Environmental change inherently affects freshwater fish populations (Hasler et al., 2016a; 

Olusanya and van Zyll de Jong 2018). Fish are poikilothermic, and can be vulnerable to 

temperature-induced stress, as they are unable to regulate body temperature (Olusanya and van 

Zyll de Jong 2018; Trumbo et al., 2014). Elevated temperatures likely affect fish physiology 

through changes to metabolic demands (Nebauer and Andersen 2019). Changes in pH due to 

increasing levels of CO2 have been shown to have adverse reactions on normal physiological 

functions in aquatic species (Wabnitz et al., 2018). However, the severity of the responses will 

likely depend on the length of exposure and level of CO2 (Kates et al., 2012). Previous studies 

have suggested that a pH drop by one unit (7.0 to 6.4-6.0) induces mortality in freshwater fish 
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(Bernier and Randall, 1998; Fivelstad et al., 2003). Other studies have observed a decline in 

hatching success and an increase in abnormal embryos (Forsgren et al., 2013), as well as 

decreased growth from reduced foraging after high CO2 exposure (Ishimatsu et al., 2004). 

Environmental change affecting the physiology of fish is also reflected in their behaviour, as fish 

have restricted movement and there are limits to what they can behaviourally avoid (Hasler et 

al., 2018; Heuer et al., 2019). Therefore, fish are reliant on a consistent environment for normal 

growth, behaviour, and metabolism (Jesus et al., 2018)  

The freshwater Japanese medaka (Oryzias latipes) serves as a model organism to test how 

environmental change might affect freshwater fish because it has a short generation time,  

spawns frequently and has embryonic stages comparable to multiple species (Iwamatsu  2004; 

Kim et al., 2016). Of the 39 stages of medaka development outlined by Iwamatsu (2004), crucial 

stages to be noted are spine, heart and swim bladder development. Previous studies have argued 

that when exposed to poor rearing conditions, fish embryos may show abnormalities in these 

stages, have a reduced hatching success (Forsgren et al., 2013; Murray et al., 2019), and 

demonstrate altered swimming behaviour (Ishimatsu et al., 2008; Rossi et al., 2015). High 

temperature may induce spinal defects (Ytteborg et al., 2010) or reduce swim bladder inflation 

(Trotter et al., 2003). Elevated levels of both temperature and CO2 may reduce stroke volume in 

the heart (Ishimatsu et al., 2004; For review see Keen et al., 2017). High CO2 may decrease the 

heart rate (Reid et al., 2000) or reduce swimming speeds (Rossi et al., 2015). Research on the 

earliest stages of fish is important for understanding the full range of the effects of climate 

induced changes (Franke and Clemmesen 2011). 

The objective of my research is to test if exposure to elevated temperature and elevated CO2 

during various embryonic stages has consequences for larval medaka morphology, growth and 
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behaviour. My study will aim to identify time-sensitive stages at which development will be 

hindered if eggs are exposed to both environmental stressors. I hypothesize that the hatching 

success of the eggs will be negatively affected and the larval fish will show abnormalities in the 

heart, spine and swim bladder. Additionally, I expect that swimming behaviour will be altered in 

the fish exposed to the treatments. With the data I have collected, I hope to emphasize the need 

for further research dedicated to climate-induced stressors and remediation.  

2. Methods 

2.1 Animal Husbandry  

Adult medaka were kept in tanks of aquatic water at 27 ˚C and on an alternating 14-hour light 

and 10-hour dark cycle in the University of Winnipeg. Tanks were held in the Aquaneering© 

Zebrafish housing system, with constant circulating water throughout each of the racks. The 

adults were fed according to the University of Winnipeg standard operating protocol, with 

Zeigler Adult Zebrafish food containing Spirulina, Cyclop-Eeze© and Golden Pearl’s larval diet. 

Hatched larval fish were held in larval tubes placed in the same housing system as the adults. 

Larval fish were fed four times a day with Paramecium and larval diet.  

2.2 Egg rearing  

Fertilized eggs were removed from fish tanks of approximately 5 males and 5 females, and 

placed in Petri dishes containing E2 embryonic development medium (see Appendix). Fifty 

percent of the E2 medium was replaced with fresh solution daily. The eggs were incubated at 

29.5˚C and were observed for 6 days or until hatching. The Petri dishes were monitored daily to 

remove any hatched larvae or dead eggs, which were indicated by a white and opaque 

appearance (Iwamatsu 2004) or lacking a heartbeat in the case of the larvae. 



4 
 

 
 

2.3 Treatments  

Sixty eggs per environmental treatment were acutely exposed to: normal water conditions, high 

temperature, high temperature and high CO2, or high CO2. Of the 60 eggs, the environmental 

stressors were either applied during the early, middle, or late developmental stages, with 20 eggs 

per developmental stage. Environmental stressors were applied by treating the E2 media, which 

then replaced the original media in the Petri dishes. To heat the E2 media to 36˚C, a beaker of 

the media was heated using a water bath and a hot plate. To elevate CO2 in the E2 media, CO2 

was bubbled into a beaker of the media, lowering the pH to 6.8 (~1500 µatm). Control 

environmental values were 27˚C with a baseline pH between 7.0 and 7.5 (~500 µatm) depending 

on water conditions in the rack.  The treatments were acute and applied daily until hatching. 

2.4 Larval morphology, growth and behaviour   

At ten days post-hatch, larval medaka were euthanized using an overdose of solution of MS222. 

Morphological features including swim bladder inflation, spinal deformities, and cardiac defects 

were monitored using a dissecting scope. Cardiac defects were defined as an abnormal heartbeat 

or a visible cardiac edema. Larval behaviour was observed by recording the fish swimming in a 5 

cm container for three minutes. The length of the fish was measured using a still frame of the 

video recording. Distance swam, velocity, and time spent in the outer zone of the container was 

calculated using an automatic tracking software (Noldus Ethovision XT 14).  

2.5 Statistical analyses 

Two-way ANOVAs and a post hoc Tukey test were used to determine treatment level effects and 

were completed using R (R Core Team 2020). Visual inspection of residuals were used to 

validate models and significance was tested at α = 0.05.  
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3. Results 

3.1 Hatching success  

Of the 240 fertilized eggs collected, 201 eggs hatched (Table 1).  The overall survival rate was 

83.75% among the four treatments (Table 2). In all of the treatments, the eggs hatched by Day 6, 

with the majority of eggs hatching on Day 5. No trend was established between the treatments.   

Table 1. The number of dead eggs and hatched eggs removed from the incubating Petri dishes. 
The eggs hatched over a period of eight days. 

 Dead eggs Hatched eggs 

Treatment Day Early Middle Late Early Middle Late 
Control 

 
 
 
 
 
 
 
 

High CO2 

1 0 0 0 0 0 0 
2 1 0 0 0 0 0 
3 0 0 4 0 0 0 
4 1 0 2 3 0 0 
5 0 0 1 10 20 4 
6 0 0 2 2 0 7 
7 0 0 0 0 0 0 
8 1 0 0 0 0 0 
1 0 0 4 0 0 0 
2 0 0 0 0 0 0 
3 1 0 1 0 0 0 
4 0 0 0 0 0 0 
5 0 0 0 7 17 7 
6 1 1 0 11 2 7 

Temp x 
CO2 

 
 
 
 
 
 

High Temp 

1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 1 0 2 0 0 0 
4 1 3 0 1 5 0 
5 0 0 1 17 12 2 
6 0 0 0 0 0 15 
1 0 0 0 0 0 0 
2 4 0 0 0 0 0 
3 0 0 0 0 0 0 
4 2 0 0 3 0 0 
5 0 0 0 7 7 13 
6 0 1 1 4 12 6 
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7 0 0 0 0 0 0 
8 1 0 0 0 0 0 

 

Table 2. Survival rates of the eggs exposed to the four treatments at time intervals early, middle 
and late.  

  Treatments   

Time Control High CO2 High Temp Temp x CO2 

Early 0.75 0.90 0.70 0.90 

Middle 1.00 0.95 0.95 0.85 

Late 0.55 0.70 0.95 0.85 

 

3.2 Larval Growth  

Length of the larval fish did not significantly differ among treatments or among time stages 

(Table 3; Figure 1). Non-significantly, larval growth was greatest in the high temperature group 

(6.46 mm ± 1.3; control: 6.35 mm ± 1.1; Figure 1), with the biggest larval fish observed in the 

middle time stage (6.68 mm± 0.5; control: 5.56 mm ± 0.9; Figure 1). The smallest fish were 

found in the high temperature and CO2 treatments, with the smallest length in the middle time 

stage (5.55 mm ± 0.9; Figure 1). 

Table 3. Two-way ANOVA values for length of the larval fish measured ten days post-hatch.  

 Df Sum Sq Mean Sq F value Pr (>F) 

Treatment  3 0.251 0.08362 1.80 0.149 

Time  2 0.193 0.09660 2.08 0.128 

Residuals  176 8.174 0.04644   
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Figure 1. Length (mm) of  the larval fish exposed to 27˚C and ~500 µatm, 27˚C and ~1500 µatm 

, 36˚C and ~1500 µatm  or 36˚C and ~500 µatm during early, middle, or late developmental 

stages.  Horizontal bars in the box plot represent the median response value, and the 75 and 25% 

quartiles. Whiskers represent ± 1.5 times the interquartile range, and outliers are indicated as 

dots.  

3.3 Morphology 

Of the 116 larval fish that survived rearing for ten days, 16 fish had visible abnormalities (Table 

4). The most frequent abnormality was an absent swim bladder in the early stage fish.  Few 

spinal defects (kinked and/or wavy) were observed across the larval fish, with the most in the 

early stage across all treatments. No cardiac defects were found in any of the other larval fishes. 

The high temperature group had the greatest number of abnormalities. 
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Table 4. Abnormalities observed in the hatched larval fish after exposure to the environmental 
stressors. 

 Early         Middle      Late 

Treatment ABS SD CD ABS SD CD ABS SD CD Total 

Control 

High CO2 

Temp x CO2 

High Temp 

1 0 0 1 1 0 2 0 0 5 

1 1 0 0 0 0 0 0 0 2 

1 1 0 0 0 0 0 0 0 2 

2 2 0 1 0 0 0 2 0 7 

Total 5 4 0 2 1 0 2 2 0 16 

ASB: absent swim bladder; SD: spinal defect; CD: cardiac defect 

 

3.4 Behaviour 

A Two-Way ANOVA yielded a significant difference in the distance travelled between 

treatments, but not between time stages (Table 5).  A post hoc Tukey test showed that the high 

temperature and high CO2 group significantly differed from the high CO2 group, and the high 

temperature group differed from the high CO2 group (Figure 2). The mean distance travelled was 

greatest in the temperature treatments at 162 cm ± 108, with the greatest distance for the early 

time stage at 191 cm ± 175 (control: 122 cm  ± 42; Figure 2). The larval fish in the CO2 

treatments travelled the shortest amount, at a mean of 120 cm ± 72, and a mean of 95 cm ± 28 

for the middle time stage (control: 132 cm ± 61; Figure 2). Velocity of the larval fish and time 

spent in the outer area of the arena did not differ significantly among the treatments or time 

stages (Table 6). However, the following non-significant trends were observed. As demonstrated 

in Figure 3, the fastest moving fish were observed in the CO2 treatments (1.19 cm/s ± 0.9; 
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control = 0.836 cm/s ± 0.3). Among the time stages, the fastest fish were in the late CO2 group 

(1.60 cm/s ± 1.1; control = 1.05 cm/s ± 0.3). Slowest moving fish were identified in the early 

control time stage (0.683 cm/s ± 0.2).  Figure 4 shows the time spent in the outer zone during the 

treatments. During the three minutes of recording, larval fish in all four treatments spent the most 

time in the outer zone of the arena (122 s ± 9.6). Fish in the middle temperature (147 s ± 15; 

control: 109 s ± 57) and late control groups (147 s ± 23) spent the most time in the outer zone. 

Fish in the early CO2 time stage spent the least amount of time in the outer zone (93.7 s ± 46; 

control: 124 s ± 44).  

Table 5. Two-way ANOVA values for distance travelled (cm) by the larval fish after exposure to 
the treatments. 

 Df Sum Sq Mean Sq F value  Pr (>F) 

Treatment  3 2.828 0.9426 3.275 0.0239 

Time  2 1.131 0.5656 1.965 0.1451 

Residuals  108 31.082 0.2878   
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Figure 2. Distance travelled (cm) by the larval fish exposed to 27˚C and ~500 µatm, 27˚C and 

~1500 µatm , 36˚C and ~1500 µatm  or 36˚C and ~500 µatm during early, middle, or late 

developmental stages. Horizontal bars in the box plot represent the median response value, and 

the 75 and 25% quartiles. Whiskers represent ± 1.5 times the interquartile range, and outliers are 

indicated as dots.  Asterisks denote significant differences between treatments (Tukey HSD post 

hoc test). 

Table 6. Two-way ANOVA values for velocity (cm/s) of the larval fish after exposure to the 
treatments.  

 Df Sum Sq Mean Sq F value  Pr (>F) 

Treatment  3 0.820 0.2733 1.067 0.362 

Time  2 1.188 0.5940 2.340 0.101 

Residuals  108 27.421 0.2539   
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Figure 3. Velocity (cm/s ) of the larval fish exposed to 27˚C and ~500 µatm, 27˚C and ~1500 

µatm , 36˚C and ~1500 µatm  or 36˚C and ~500 µatm during early, middle, or late 

developmental stages. Horizontal bars in the box plot represent the median response value, and 

the 75 and 25% quartiles. Whiskers represent ± 1.5 times the interquartile range, and outliers are 

indicated as dots. 

Table 7. Two-way ANOVA values for time (s) spent in the outer zone of the arena after exposure 
to the treatments. 

 Df Sum Sq Mean Sq F value  Pr (>F) 

Treatment  3 0.912 0.3041 1.937 0.128 

Time  2 0.264 0.1320 0.841 0.434 

Residuals  107 16.797 0.1570   
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Figure 4. Time spent (s) in the outer  zone of the arena of  the larval fish exposed to 27˚C and 

~500 µatm, 27˚C and ~1500 µatm , 36˚C and ~1500 µatm  or 36˚C and ~500 µatm during early, 

middle, or late developmental stages.  Horizontal bars in the box plot represent the median 

response value, and the 75 and 25% quartiles. Whiskers represent ± 1.5 times the interquartile 

range, and outliers are indicated as dots. 

 

Discussion  

4.1 Hatching success 

From what has been observed in other studies (Forsgren et al., 2013; Murray et al., 2019), I 

predicted that environmental stressors would decrease embryo survival. Neither elevated CO2 
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nor temperature altered the hatching success of the embryos. My results agree with other high 

CO2 studies (Franke and Clemmesen 2011; Wagner et al., 2002). When exposed to stressful 

conditions, medaka appear to adapt in such conditions due to their impressive temperature 

tolerance and ability for acid-base regulation in response to CO2 exposure (Kirchmaier et al., 

2015; Sampetrean et al., 2009; Sylvester 1972; Tseng et al., 2013). The wide temperature 

tolerance of medaka may have been the cause for the insignificant difference in hatching success 

for the elevated temperature treatments, as they can survive from 4-40˚C (Kirchmaier et al., 

2015; Sampetrean et al., 2009). In addition, rather than the embryos being hindered by the rising 

temperature, some studies suggest that increased temperatures may induce a faster rate of 

development (Rosemore and Welsh 2012).  

4.2 Larval Growth  

Larval growth was not significantly influenced by elevated CO2 or temperature (p > 0.05). This 

is in accordance with other studies on short-term high temperature exposures (Spinks et al., 

2019) and long-term high CO2 exposures (Cominassi et al., 2019; Sundin et al., 2019). Our 

findings disagree with studies on marine fish, who have found that both short-term and long-term 

exposures to high CO2 induced a decrease in larval growth (Baumann et al., 2012; Fivelstad et 

al., 1998; Moran and Støttrup 2011). In addition, fish exposed to long-term high temperatures 

showed a decrease in growth (Spinks et al., 2019). Sundin et al. (2019) suggests that satiation 

influences fish growth, and fish not fed to satiation may show reduced lengths when exposed to 

environmental stressors. This may have affected the results in this study, as the larval fish were 

fed sufficient amounts of food. It can also be suggested that length was not affected by the 

environmental stressors because of the medakas acid-base regulation, high temperature tolerance 
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and ability to acclimate (Kirchmaier et al., 2015; Sampetrean et al., 2009; Sylvester 1972; Tseng 

et al., 2013). 

4.3 Morphology  

Spine development, cardiac development and the presence of a swim bladder were the chosen 

morphological parameters as they represented crucial stages of development (Iwamatsu 2004). I 

found no obvious relationship between high temperature and CO2 exposures and abnormalities in 

the spine, heart or swim bladder.  My results agree with those of Franke and Clemmesen (2011), 

who found no change in the occurrence of abnormal embryos in the Atlantic herring when 

exposed to high CO2 (~4635 µatm). However, other studies across fish species have suggested 

that elevated temperatures reduced the number of vertebrae (Lindsey and Ali 1965), increased 

the presence of fused vertebrae (Ogawa 1965), reduced swim bladder inflation (Trotter et al., 

2003), or reduced the stroke volume (Keen et al., 2017). Likewise, high CO2 exposure decreased 

cardiac output and decreased the heart rate (Ishimatsu et al., 2005; Reid et al., 2000).  Based on 

our results, we can suggest that medaka may have the ability to acclimate to changes in the 

environment (Li et al., 2015), or change their morphology when exposed to environmental stress. 

Phenotypic plasticity in fish can be observed in other studies, such as remodeling the heart 

during early development of zebrafish to compensate for temperature-induced stress (Keen et al., 

2017).  Due to the wide range of results from exposure to environmental stressors, we can 

conclude that responses are highly variable among species, and species-specific research is 

necessary for definitive results (Franke and Clemmesen 2011). 
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4.4 Behaviour  

I predicted that a change in pH from 7.8 to 6.8 may affect swimming behaviour in the medaka. 

Velocity and time spent in the outer zone did not differ significantly among treatments or time 

stages, however, larval fish in the high temperature and high temperature and CO2 groups 

travelled significantly further than fish in the high CO2 group.  Research concerned with 

swimming activity after exposure to environmental stressors has produced a wide range of 

results across fish species. My results accord with other studies that have observed a reduction in 

swimming activity after exposure to elevated CO2 (Regan et al., 2016; Schneider et al., 2019). In 

some studies, swimming activity increased (Biro et al., 2010; Fukuhara 1990), decreased 

(Johansen and Jones 2011), or did not change when exposed to high temperature (Kent and 

Ojanguren 2015). One hypothesis for the observed plasticity in temperature variation may be due 

to the variable body muscle mass after exposure to different temperatures (Sfakianakis et al., 

2011). Elevated temperatures may result in thicker muscles for swimming, and therefore the 

ability to endure swimming in higher temperatures (Sfakianakis et al., 2011). Where no change 

was observed, I can suggest that returning to baseline pH during the ten day rearing period 

mediated any disturbances to the physiology altering behaviour. This finding can be supported 

by previous studies suggesting that normal behaviour was observed once the fish were returned 

to baseline pH (Hasler et al., 2016b).  

4.5 Limitations 

Although research on environmental stressors and aquatic species is becoming more frequent, 

the type and length of exposure observed in my study on freshwater species in their embryonic 

stage was novel. The small sample size, short exposure time and the use of one generation 

proved to be limitations in this study. Statistical analyses with larger sample sizes would have 



16 
 

 
 

increased statistical power. The stressors were applied for brief periods at a time, rather than 

continuous exposure. After the E2 solution was treated and the original medium was replaced, 

we can assume that the heat eventually dissipated and the pCO2 levels returned to baseline. In 

addition, only one generation was exposed to the treatments, so it is likely that greater results 

could be observed over a multi-generational scale. By using both the parent and offspring 

generations, nongenetic inheritance, or transgenerational plasticity may be observed in the ability 

to adapt to environmental stress (Bonduriansky and Day 2009; Schunter et al., 2016). 

Suggestions for future studies include long-term exposure throughout the egg phase and using 

multiple generations, as there is a lack of information concerning sustained exposure to CO2 

(Ishimatsu et al., 2004).  

 

5. Conclusion 

Elevated temperature and CO2 did not affect hatching success, the occurrence of morphological 

abnormalities, larval growth or swimming behaviour in the Japanese medaka. Lethal exposure to 

both temperature and CO2 varies among fish species (Ishimatsu et al., 2005), and it is likely the 

combination of multiple environmental stressors and longer exposures that will elicit a 

developmental and behavioural change in freshwater fish. I suggest that responses to 

environmental stressors are highly species-specific (Franke and Clemessen 2011; Murray et al., 

2014), and gradual changes to the climate will directly affect freshwater fish. Future studies on 

long-time exposures and stressors applied during the developmental stages are imperative.  
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Appendix Ⅰ 

Embryonic E2 Medium  

Buffer Mix preparation 

Dissolve reagents below in 1L of water and filter sterilize.  

Reagent  Desired Concentration (mM) Weight of salt (g) 
KH2PO4 750 102.1 
Na2HPO4 250 67.0 

https://dx.doi.org/10.1186%2F1472-6793-10-12
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E2A preparation 

Dissolve reagents in 2L of water and filter sterilize.  

Reagent  Desired Concentration  Weight of salt (g) 
NaCl 1.5 M 175 
KCl 50 mM 7.5 
MgSO4   7(H2O) 100 mM 49.3 
KH2PO4 15 mM 4.08 
Na2HPO4 5 mM 1.42 
  

E2B preparation 

Dissolve reagents in 1L of water and filter sterilize.  

Reagent Desired concentration (mM) Weight of salt (g) 
CaCl2   5(H2O) 500 73.5 
 

E2C preparation 

Dissolve reagents in1L of water and filter sterilize.  

Reagent  Desired concentration (mM) Weight of salt (g) 
NaHCO3 300 14.7 
Final E2 medium  

Add all solutions. Adjust pH to 7.2-7.6. Store at 28˚C. Expires one week after preparation.  

Reagent  Volume (mL) 
E2A 100 
E2B 20 
E2C 20 
0.1% methylene blue  10 
 

Appendix Ⅱ 

Significant developmental stages in Oryzias latipes. Adopted from Iwamatsu (2004).  

Stage Interval Key developmental features 
Stage 22 First appearance of the tubular heart 
Stage 24 Start of heart beating  
Stage 26 Vacuolization of the notochord  
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Stage 32 Formation of the swim bladder 
Stage 33 Completion of notochord vacuolization  
Stage 36 Heart formation complete  
Stage 39 Hatching stage 
 

Appendix Ⅲ 

MS-222 

Dissolve reagents in 500 mL of aquatic water. Store securely. 

Reagent  Weight (g) 
MS-222 1.0 
NaHCO3 0.5  
 
 

 

 

 

 

 


