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In the quasistatic limit, a time-varying magnetic field inside a conductor is governed by the diffusion

equation. Despite the occurrence of this scenario in many popular physics demonstrations, the

concept of magnetic diffusion appears not to have garnered much attention itself as a subject for

teaching. We employ the model of a thin conducting tube in a time-varying axial field to introduce

magnetic diffusion and connect it to the related phenomenon of inductive shielding. We describe a

very simple apparatus utilizing a wide-band Hall-effect sensor to measure these effects with a variety

of samples. Quantitative results for diffusion time constants and shielding cutoff frequencies are

consistent with a single, sample-specific parameter given by the product of the tube radius, thickness,

and electrical conductivity. The Laplace transform arises naturally in regard to the time and

frequency domain solutions presented here, and the utility of the technique is highlighted in several

places. VC 2021 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/10.0003508

I. INTRODUCTION

Demonstrations of the interaction between magnetic fields
and non-magnetic conducting materials are very important—
and popular. They provide strong, and often quite dramatic,
visualizations of the Lorentz force, Faraday’s law, and
Lenz’s law, and are typically employed to launch a discourse
on the fact that electricity and magnetism, while seemingly
disparate phenomena in static configurations, are truly one
and the same when time variation occurs. Particular manifes-
tations of such interactions, such as eddy currents or mag-
netic braking, are discussed to varying degrees in standard
textbooks,1–3 while much greater variety and detail can be
found in the literature.4–18

To motivate our work on the related but seemingly lesser-
known topic of magnetic diffusion, we begin by writing the
differential equation for a time-varying magnetic field in a non-
magnetic conductor (see, for example, Sec. 9.4.1 of Ref. 1)

$2Bðr; tÞ ¼ l0r
@Bðr; tÞ
@t

þ l0�
@2Bðr; tÞ
@t2

; (1)

where l0 is the permeability of free space, and r and � are
the electrical conductivity and permittivity of the conductor,
respectively. In the limit of slowly varying fields, indicative
of the scenarios in the many papers mentioned above, the
second-order time derivative associated with the displace-
ment current is negligible. As a result, in this quasistatic
limit, Eq. (1) is safely replaced with

$2Bðr; tÞ ¼ l0r
@Bðr; tÞ
@t

; (2)

which is indeed a form of the diffusion equation,3,19–21

though it is rarely noted as such and few of the phenomena it
describes are ever regarded as diffusive processes.

In light of this circumstance, one is tempted to re-interpret
some such phenomena in terms of magnetic diffusion. For
example, an ac magnetic field impinging on a metallic enclo-
sure can be viewed as having insufficient time each half-
cycle to fully diffuse into the conductive structure before it
must start to diffuse out again. Such an effect is exacerbated

with higher frequencies, thicker walls, and larger conductivi-
ties, all of which lead to increased inductive shielding. This
point of view also leads one to anticipate a phase lag
between the applied field and the field that has managed to
diffuse into the enclosure. While this interpretation is cer-
tainly consistent with the physics at hand, one must concede
that it is not as satisfactory as a more intuitive, standard
description in terms of induced (eddy) currents and Lenz’s
law, say. Moreover, for the steady-state sinusoidal case, with
Bðr; tÞ ¼ BðrÞe�ixt, the right hand side of Eq. (2) is readily
replaced with �2iBðrÞ=d2 (where d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=l0rx

p
is the elec-

tromagnetic skin depth1–3), which only further obscures the
form and function of the diffusion equation. It appears then
that despite the generality and ubiquity of Eq. (2), the con-
cept of magnetic diffusion can indeed be easily overlooked.

One scenario where the notion of a magnetic field diffus-
ing through a conductor is quite natural and intuitive is the
step response.3,19–21 Here, a switched magnetic field that
would be established (near) instantaneously in the absence of
the conductor now takes time to diffuse through the bulk of
the material as induced eddy currents within it decay. This
approach is well established in the research literature,22–27

but is largely unknown as a teaching demonstration, as far as
we can tell. In this paper, we present a simple experiment
that employs a wide-band Hall-effect sensor to directly mon-
itor the process of magnetic diffusion and determine associ-
ated time constants. The same apparatus is used without
modification to make ac measurements as a function of fre-
quency and quantify the onset of inductive shielding. The
two phenomena are linked, of course, and we also take this
opportunity to highlight the utility of the Laplace transform
for analyzing the response of the system in both the time and
frequency domains.

This paper is organized as follows. First, we develop the
model of the thin conducting tube in a time-varying axial
field, providing both the step and steady-state sinusoidal
response and linking the two via the Laplace transform. This
model is intuitive, informative, and easy to realize experi-
mentally. Next, we describe the apparatus and experimental
procedure that we employ at our institution as an undergrad-
uate laboratory exercise. We then present and discuss results
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for magnetic diffusion through conducting slabs and tubes,
as well as inductive shielding of the latter. In the appendices,
we provide known solutions for the general case of a con-
ducting tube of arbitrary thickness, and also present the
design method and characterization of the coil we built to
generate a highly homogeneous magnetic field over the
length of the tube samples.

II. THE THIN CONDUCTING TUBE IN A TIME

VARYING AXIAL FIELD

Following the approach of Haus and Melcher,19 we con-
sider a long, cylindrical, non-magnetic tube with inner radius
a, outer radius b, thickness h � b� a, permeability l0, and
conductivity r, subject to an applied, uniform, axial mag-
netic field BoðtÞ. Assuming the tube to be thin (b=a � 1),
Ampère’s law can be written as the boundary condition

BiðtÞ � BoðtÞ ¼ l0 hJðtÞ; (3)

where BiðtÞ is the total axial field inside the tube, J(t) is an
azimuthal (eddy) current density that is uniform over the
thickness of the tube, and the quantity hJ(t) is the instanta-
neous surface current that leads to the discontinuity of the
field inside and outside the tube. This is, of course, just the
model of an infinitely long solenoid, which produces an axial
field of magnitude l0 hJðtÞ inside its volume and zero field
outside. (Indeed, one could approach this entire problem as a
long, thin, single-turn inductor of length ‘, resistance
R ¼ 2pa=rh‘, and inductance L ¼ l0pa2=‘, as done by
�I~niguez et al.9) The assumption that the current density is
uniform also implies that the tube is electromagnetically
thin, i.e., h� d.

From Faraday’s law of induction, we also have

E ¼ � dU
dt
; (4)

where E ¼ EðtÞ 2pa is the electromotive force associated
with the induced electric field E(t) driving eddy currents
around the tube, and U ¼ BiðtÞpa2 is the magnetic flux
through the tube. Using Ohm’s law J ¼ rE, Eq. (4) can be
written as

2pa

r
JðtÞ ¼ �pa2 d

dt
BiðtÞ: (5)

Combining Eqs. (3) and (5) and rearranging leads to the
differential equation

dBiðtÞ
dt
þ BiðtÞ

s
¼ BoðtÞ

s
; (6)

with time constant

s ¼ 1

2
l0rah; (7)

containing the sample-specific parameter ðrahÞ. Equation
(6) is completely general and can be used to determine the
total magnetic field inside a thin conducting tube for any uni-
form applied field BoðtÞ, as is done below for a step field and
a sinusoidal field. Corresponding solutions for the general
case of a tube of any thickness are presented in Appendix A.

For the step field BoðtÞ ¼ Bo for t � 0, the solution for ini-
tial condition Bið0Þ ¼ 0 is easily found to be19,20

BiðtÞ ¼ Bo ð1� e�t=sÞ: (8)

The magnitude of the current density in the tube is
therefore

JðtÞ ¼ Bo

l0h
e�t=s: (9)

Equations (8) and (9) show that the application of a dc step
field leads, by Lenz’s law, to an induced field that opposes
Bo. The overall interpretation is that the applied field diffuses
into the tube with the same characteristic time as the decay
of the induced current. Since s depends not only on the tube
dimensions but also its composition, materials with high con-
ductivity, such as copper, will produce long-lasting induced
currents (i.e., slow diffusion of Bo), whereas a poor conduc-
tor will produce short-lived induced currents (i.e., fast diffu-
sion of Bo.)

We now consider an ac field of the form BoðtÞ ¼ Bo e�ixt,
with frequency-independent magnitude Bo. For the steady-
state sinusoidal response, one anticipates a solution of the
form BiðtÞ ¼ BiðxÞe�ixt. By substituting BoðtÞ and BiðtÞ into
Eq. (6), one finds the complex amplitude8,9,17,22

BiðxÞ ¼
Bo

1� ixs
; (10)

which reduces to BiðxÞ � Boð1þ ixsÞ at low frequency9,10

and goes to zero at high frequency. From this result, the
induced magnetic field generated by J(t) is easily
determined

BiðtÞ � BoðtÞ ¼ BoðtÞ
ixs

1� ixs
: (11)

As expected, it is 90� out of phase with the applied field and
tends to zero as x! 0 (i.e., xL� R, poor shielding), while
it is 180� out of phase with the applied field and approaches
�BoðtÞ as x!1 (i.e., xL� R, complete shielding).

The relative magnitude of the net internal field can be
written as

jBiðxÞj
Bo

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxsÞ2

q (12)

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðah=d2Þ2

q ; (13)

and the onset of inductive shielding is seen to occur at a cut-
off frequency

fc � ð2psÞ�1
(14)

¼ ðpl0rahÞ�1; (15)

which can also be cast as a critical thickness

hc � d2=a (16)

¼ ðpl0raf Þ�1: (17)
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The latter result, noted by Fahy et al.,8 often comes as a sur-
prise: It says that the onset of shielding for this geometry
occurs not when the skin depth is comparable to the thick-
ness of the tube (d 	 h)—a commonly held misconception—
but when d2 	 ah.8,28 As a result, an electromagnetically
thin tube with h� d can still provide efficient shielding if
a� d.

We end here by re-deriving the above results via the
Laplace transform approach. In doing so, our intention is not
to provide an overview of such methods—which are well
described in many standard textbooks29–32 and are further
discussed in the pedagogical literature33,34—but rather to
take the opportunity to highlight this elegant mathematical
tool in the context of a very interesting and simple electro-
magnetic system. We will also use the Laplace transform in
two other instances in this paper, making use of standard
transform-pair lookup tables throughout.29–32

The Laplace transform of Eq. (6) with initial condition
Bið0Þ ¼ 0 is

sBiðsÞ þ
BiðsÞ

s
¼ BoðsÞ

s
; (18)

where B(s) denotes the transform of a magnetic field B(t),
and s is a complex frequency in general. Solving for BiðsÞ
gives the Laplace transform of BiðtÞ

BiðsÞ ¼
BoðsÞ
1þ ss

: (19)

For the dc step field turned on at t¼ 0, BoðsÞ ¼ Bo=s and
Eq. (19) becomes

BiðsÞ ¼
Bo

sþ s2s
; (20)

which has inverse transform BiðtÞ ¼ Bo ð1� e�t=sÞ, identical
to Eq. (8).

The steady-state sinusoidal response, on the other hand,
is given by BiðtÞ ¼ HðsÞBo e�ixt with transfer function
HðsÞ � BiðsÞ=BoðsÞ found from Eq. (19) and evaluated at
s ¼ �ix.31 This gives

BiðtÞ ¼
Bo

1� ixs

� �
e�ixt; (21)

where the term in braces is the complex amplitude of
Eq. (10). It is also worth noting that the transfer function
found here is identical to that of a low-pass filter, which is
expected intuitively for inductive shielding (i.e., low fre-
quencies pass through the tube, high frequencies do not) and
also given that an equivalent LR circuit model can be used to
analyze this system.9

III. EXPERIMENTAL METHOD

We now describe the apparatus and experimental pro-
cedure that we use in an undergraduate laboratory exer-
cise to make quantitative studies of magnetic diffusion
and inductive shielding in conducting tubes based on
the preceding theoretical model. We also present an
ancillary experiment using conducting slabs that pro-
vides a very simple and intuitive demonstration of

magnetic diffusion. The two experimental configurations
are shown in Fig. 1.

The specific details of the various measurements, as well
as the dimensions and properties of the different samples, are
presented further below. In general, however, the experimen-
tal procedure is quite simple. An electromagnetic coil,
described in detail in Appendix B, is driven by a waveform
generator (Rigol DG1032Z) to generate the applied magnetic
field. Field measurements are made by a Hall-effect sensor
(Sentron CSA-1VG)35 with its differential output connected
to two separate channels of an oscilloscope (Agilent DSO-X
2014A). The internal math function of the oscilloscope
is used to determine the difference of the two channels,
providing a final signal that is proportional to the magnetic
field at the location of the sensor. Signal averaging using the
built-in functionality of the oscilloscope is also employed.
The addition of a differential amplifier between the sensor
and oscilloscope could further improve performance,28,36 but
was purposely omitted here in order to keep the apparatus as
simple as possible and hopefully further encourage the adop-
tion of magnetic diffusion and ac shielding studies in the
undergraduate teaching lab. The 100-kHz bandwidth of
the sensor35,36 is suitable for the time and frequency scales
explored here.

A. Step field measurements

Step field measurements were performed by driving the
coil with a 50-Hz square-wave voltage alternating between
zero and 7.5 V. The input couplings of the oscilloscope were
set to dc, and 256 averages were used. Because the analog
output channel of the Hall-effect sensor is referenced to its

Fig. 1. Cutaway models of the two experimental configurations. The 3D-

printed coil former (white) was made as a single piece with grooves for wire

windings, and square end supports that act as a stand. Top: the conductive

slab is placed between the Hall-effect sensor and one end of the coil.

Bottom: the sensor is placed at the center of the coil and conductive tube.

Both the sensor and tube are held in position by additional 3D-printed parts,

which are not shown.
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common output channel held at 2.5 V (giving a full scale dif-
ferential output of 62.5 V),35 the gain of both scope channels
was set to 500 mV/div. An offset of 2.5 V was applied to
both channels, and the sensitivity of the math waveform was
set to 10 mV to capture the much smaller differential signal.
The time constant of our coil is calculated to be 2.2 ls
(L ¼ 129 lH, R ¼ 8:13 Xþ 50 X from the Rigol DG1032Z
output), which is less than both the scan time (	3 ls) and
rise time (	3 ls) of the sensor35,36 and does not limit the
overall bandwidth of the system. The signal of a step field
measurement performed at the center of the coil in the
absence of any conducting sample is shown in Fig. 2.

Given the finite bandwidth of the Hall-effect sensor, its
output signal S(t) must also be determined by the differential
equation for a low-pass filter

dSðtÞ
dt
þ SðtÞ

sf
¼ kBðtÞ

sf
; (22)

where B(t) is the magnetic field at the location of the sensor,
sf is the time constant (or rise time) of the sensor, and k is its
sensitivity (	280 V/T for the CSA-1VG).35 For a magnetic
field of the form of Eq. (8), one can solve Eq. (22) directly
by standard methods for linear first-order equations.29,30

Conversely, one can solve by Laplace transform. By analogy
with Eqs. (6) and (18), and by making use of Eq. (20) for the
Laplace transform of the field of Eq. (8), one quickly finds
the Laplace transform of S(t)

SðsÞ ¼ 1

1þ ssf

So

sþ s2s
; (23)

where So¼ kBo. The general solution for the sensor output,
along with two particularly useful limits, is thus

SðtÞ ¼ So 1� sf e
�t=sf � se�t=s

sf � s

 !
; (24)

¼ So 1� tþ s
s

e�t=s

� �
when sf ¼ s; (25)

! So 1� e�t=sð Þ when sf � s: (26)

One can also derive Eq. (24) from the Laplace convolution
of So ð1� e�t=sÞ with the impulse response of the low pass
filter ð1=sf Þe�t=sf .29–32

Given that the magnetic diffusion time constants measured
in this work are around two orders of magnitude larger than
the rise time of the Hall-effect sensor (sf 	 3 ls), Eq. (26) is
appropriate here. As a result, we use as a fit function

SðtÞ ¼ So 1� e�ðt�tsÞ=sð Þ; (27)

where ts ¼ 3 ls is the scan time of the sensor, and time t is
measured with respect to the function generator trigger cor-
responding to the rising edge of the square-wave drive volt-
age. If thinner tubes (i.e., shorter s) or narrower-band sensors
(i.e., longer sf) are employed, one may need to use Eq. (24)
instead. Finally, we note that given the very similar time
constants of our coil and sensor, the exponential fit in Fig. 2
could be replaced by something akin to Eq. (25). This has lit-
tle bearing on our present study, however, and a more
detailed analysis is unwarranted here.

B. Ac field measurements

Here, the coil is driven by a 15 Vpp sine wave at 101 logarith-
mically spaced frequencies over the range f¼ 1–10,000 Hz.
The oscilloscope couplings and sensitivities are the same as in
Sec. III A. Over this frequency range, the magnitude of the drive
circuit impedance increases by only 1%; however, the phase
varies by about 8�, which is not insignificant. To account for
these changes, as well as any potential frequency dependence in
the receive chain, we also recorded the phase of the differential
signal (relative to the trigger) and repeat the same set of fre-
quency measurements with and without the conducting tubes.
The latter represents a background measurement that is used to
correct the tube data with respect to the phase and magnitude of
the applied field at each frequency. A similar process has been
described elsewhere.13 Custom PYTHON code was written to auto-
matically pass frequencies to the waveform generator and return
amplitude and phase measurements from the oscilloscope.
Signal averaging is set to 16 for the lowest frequencies and is
dynamically increased via the program for higher-frequency
measurements with tubes, which otherwise would suffer from
reduced signal-to-noise ratio (SNR) due to greater inductive
shielding. Overall, this strategy helps minimize run time. From
Eqs. (13) and (14), data for the corrected signal amplitude are fit
to the following function to extract the cutoff frequency fc:

jSðf Þj ¼ Soffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=fcÞ2

q : (28)

C. Samples

The response to a step field applied perpendicular to the
face of a slab was measured for three samples—one each of

Fig. 2. The differential signal from the oscilloscope for a step field measure-

ment using the configuration shown in the bottom of Fig. 1 with no tube.

The smooth curve is an exponential fit to the data assuming an offset of

exactly 3 ls to account for the sensor scan time. The fit yields a time con-

stant of 2:1 l s, consistent with the quoted rise time of the sensor and previ-

ous tests (Refs. 35 and 36).
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copper, brass, and plastic. The nominal dimensions of the
slabs—which were in fact borrowed from our own sliding
magnet demo—are 10 in. long, 2 in. wide, and 1/4 in. thick.
The response to both step and ac fields applied along the axis
of a tube was measured for three samples—two of copper
and one of aluminum—each nominally 6 in. long, but with
different diameters and thicknesses. The precise dimensions

and measured conductivities of the tubes, which are needed
for a quantitative analysis of magnetic diffusion and induc-
tive shielding via the models in Sec. II, are given in Table I.
The length ‘, outer diameter 2b, and thickness h of the tubes
were measured with digital calipers at five different positions
each to account for non-uniformities. The resistivity q of the
samples was determined via a standard 4-wire measurement
by driving a known current I through the tubes and measur-
ing the voltage drop V across them with a digital multimeter
(Agilent 34411A). From V¼ IR and R ¼ q‘=A, where A is
the cross-sectional area of the tube and a ¼ b� h is its inner
radius, one finds

1

r
� q ¼ V

I

pðb2 � a2Þ
‘

¼ V

I

pð2bh� h2Þ
‘

: (29)

IV. RESULTS AND DISCUSSION

A. Magnetic diffusion through slabs and tubes

The results for the slabs are shown in Fig. 3. The SNR is
poor for these measurements largely due to the much weaker
applied field at the location of the sensor in this configuration
(see Figs. 1 and 8.) This could be improved by using a small,
flat coil of many turns placed directly on the face of the slab.
Still, the results presented here clearly demonstrate that, as
expected, magnetic diffusion through copper is slower than
it is through brass, since the former is the better conductor.
Also, the step field is seen to pass through the non-
conducting plastic slab near-instantaneously (i.e., indistin-
guishable from the rise time in Fig. 2). Another result worth
noting in Fig. 3 is the near-instantaneous jump seen in the
field for copper and brass, when the sensor is placed directly
behind the slab but not on the center line (or axis) of the coil.
By symmetry, it is only at the central location where the net
field is expected to be uniquely zero just after the coil is
turned on. At any other location, the induced field does not

Table I. Measured properties of the tube samples. The numbers in parenthe-

ses are the uncertainty in the last digit(s) of each quantity, as determined by

standard techniques (Ref. 37). The tubes are seamless, and we assume their

electrical properties to be isotropic. A dc current of 5.000(5) A was used for

all resistivity measurements.

Tube

h
(mm)

b
(mm)

‘

(mm)

V

(lV)

q
(10�8 X
 m)

r
(107 S/m)

Copper #1 0.804(7) 6.357(9) 153.0(5) 422(2) 1.66(3) 6.02(11)

Aluminum 1.468(5) 12.706(4) 153.5(5) 313(3) 4.50(5) 2.22(2)

Copper #2 1.672(15) 9.507(6) 152.0(5) 144.4(7) 1.73(2) 5.78(6)

Fig. 3. The magnetic field measured at the face of the slabs opposite to the

coil. The legend refers to both graphs. Top: results for a measurement posi-

tion that is on the center line of the coil. Bottom: results for a measurement

position that is 2.5 mm away from the center line toward the top of the slab.

Fig. 4. The magnetic field measured at the center of the tubes. For clarity,

only every 50th data point is shown. The solid lines are least-square fits to

Eq. (27) for all data at t � ts ¼ 3 ls.
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necessarily cancel the applied field. Equivalently, one can
think of this result as being a consequence of the magnetic
field lines initially wrapping around the exterior of the slab
while its interior is still fully shielded by the induced cur-
rents. Again, because of symmetry, there can be no magnetic
field at the central point located directly on the back (or
front) face of the slab, since the approaching field lines must
spread out in opposite directions about this point.

The results for the tubes are shown in Fig. 4 along with a
background measurement (i.e., no tube) for comparison.
Time constants are determined from fits to Eq. (27) with
ts ¼ 3 ls and are compiled in Table II along with predicted
values from the thin-tube model. Our results largely agree
with the rule-of-thumb that the thin-tube model should be
good to within 	10% for a=b � 2=3.20,25 The greatest dis-
crepancy is seen with our thickest sample, which perhaps
suggests that one should use tubes with a/b closer to 0.9, say,
if the goal is to provide teaching demonstrations that agree
very closely with the thin-tube model. We also point out that
time constants predicted from the general model (Eq. (A6))
are closer to, but still do not agree within error, with our
measured values. Still, these results provide an excellent
demonstration of magnetic diffusion, consistent with the
trends predicted from measured sample properties. With a
good degree of confidence, then, we use our values of sfit

here to predict the cutoff frequencies for the ac measure-
ments of Sec. IV B. These are also listed in Table II.

B. Inductive shielding by tubes

Example data of the ac signals measured at the center of
the tubes are shown in Fig. 5 for a drive frequency of 1 kHz.
At this frequency, all samples exhibit a clear phase shift with
respect to the voltage trigger, as well as a reduction in ampli-
tude with respect to the background value. These are both
hallmarks of the presence of eddy currents and thus the onset
of inductive shielding. (Indeed, it is very informative for stu-
dents to simply observe how the signal on the oscilloscope
changes for a given sample as they increase the drive fre-
quency on the function generator.) From the comparative
results shown in Fig. 5, it is also clear that the degree of
shielding for the different tubes is consistent with their
respective cutoff frequencies predicted from the diffusion
measurements above (Table II) or by what one would esti-
mate from their properties in Table I via Eq. (15).

It is also possible to discern a small phase shift in the
background signal in Fig. 5. This is due to the complex

Table II. Ratios of tube radii; the time constants predicted from the thin-tube

model using the values given in Table I; the measured time constants

extracted from fits to the data in Fig. 4; and the cutoff frequencies calculated

from sfit via Eq. (14).

Tube a / b sthin ðlsÞ sfit ðlsÞ fc (Hz)

Copper #1 0.874(2) 169(4) 179.3(2) 887.8(7)

Aluminum 0.8845(6) 230(3) 244.9(2) 649.9(5)

Copper #2 0.824(2) 476(7) 544.5(6) 292.3(3)

Fig. 5. Signal waveforms at a drive frequency of 1 kHz. Amplitudes are nor-

malized with respect to the background value (21.9 mV) measured here.

Fig. 6. Complex components of the internal magnetic field for the copper

tubes. The legend refers to both graphs. The solid and dashed-dotted lines

are the functional form for the general model (Eq. (A7)) and the thin-tube

model (Eqs. (13) and (7)), respectively. The dashed lines are the low-

frequency limit (Refs. 9 and 10) of the latter as discussed in Sec. II.
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impedance of the drive circuit arising from the inductance of
the coil. To correctly extract the complex components of
the field inside the tubes, the raw data of the type shown in
Fig. 5 must be corrected with respect to the phase and ampli-
tude of the background signal at each frequency as discussed
in Sec. III B. The results of this process are shown in Fig. 6
for the two copper samples. Overlaid on top of these data are
curves for the general model (Appendix A), the thin-tube
model, and the low-frequency limit of the latter generated
using the sample properties given in Table I. The low-
frequency model proposed by �I~niguez et al.9,10 is suitable to
a few hundred hertz or less for these samples, while the thin-
tube model can extend the range of study by perhaps another
order of magnitude. The general model, on the other hand,
provides excellent agreement over the full frequency range
studied here. The limitation of the thin-tube model is easily
understood from the well-known rule-of-thumb that the skin
depth of copper is roughly 1 cm at 60 Hz, which translates to
3 mm at 670 Hz or 1 mm at 6 kHz. Looking at the copper
tube thicknesses given in Table I, then, one sees that the con-
dition of being electromagnetically thin (i.e., h� d) will
certainly break down over the frequency range studied here,
and deviations from the thin-tube model are to be expected
at the higher frequencies.

To better highlight the inductive shielding of the tubes, as
well as their behavior as low-pass filters, the magnitude of
the internal field is plotted versus frequency in Fig. 7 for all
tube samples. The low-frequency end of the data are fit to
Eq. (28), and cutoff frequencies are compiled in Table III
along with predicted values from the thin-tube model. We
chose to limit the fitting range to data with normalized
amplitude greater than 0.5, which from Fig. 6 still show
good agreement with the thin-tube model. The predicted cut-
off frequencies from Table II are also presented in Fig. 7 and
show good agreement with the ac measurements. A final fea-
ture of interest in Fig. 7 is the slight decrease in amplitude

seen in the background measurement at high frequencies.
This again is due to the small increase in coil impedance; all
sample data have been corrected for this by normalizing to
the background amplitude at each frequency value as men-
tioned above. With regard to the results in Table III, one can
see that all measured values of cutoff frequency agree to
within a few percent or less with the values predicted from
the thin-tube model. Also, as shown in the last two columns
of the table, the onset of inductive shielding does indeed
occur when d2 	 ah and not when d 	 h.8,28

V. CONCLUSION

A review of the literature reveals that the concept of mag-
netic diffusion is rarely considered for the purposes of peda-
gogy.38 The thin conducting tube in a uniform, time-varying
axial field provides a complete and very accessible model for
exploring magnetic diffusion as well as the related phenome-
non of inductive shielding. The product of the tube radius,
thickness, and electrical conductivity provides a single,
sample-specific parameter that sets both the time constant
for stepped dc fields to diffuse through the tube and the cut-
off frequency for ac fields to penetrate the interior of the
tube. While not required, the use of the Laplace transform to
solve for and link the time and frequency domain solutions
of this system further broadens the educational experience
here.

A simple apparatus utilizing a wide-band Hall-effect sen-
sor allows either stepped or ac measurements without any
configurational changes. The addition of a differential ampli-
fier following the Hall-effect sensor could further improve
performance. As it stands, the present setup provides more
than sufficient SNR to make meaningful qualitative and
quantitative tests on a variety of samples. Time constants
and cutoff frequencies extracted from the two types of mea-
surement for conducting tubes show good agreement with
each other as well as with predicted values.

Through a judicious choice of frequency range and tube
thickness, one can design a student laboratory experiment
that resides fully within the limits of the thin-tube model
(h� a; d). This could be desirable from the point of view of
minimizing the amount of information needed to understand
the experiment. Still, many students will likely wonder what
happens as the skin depth becomes smaller than the tube
thickness, say. The general solutions (also provided here)
answer such questions and should be well within reach for
an advanced undergraduate student.
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Fig. 7. Normalized magnitude of the internal field as a function of fre-

quency. The solid lines are least-square fits of Eq. (28) to all data points

with ordinate value greater than 0.5. The horizontal dashed line indicates the

half-power amplitude 1=
ffiffiffi
2
p

that defines the cutoff frequency of a low-pass

filter. The vertical dashed lines indicate the cutoff frequency predicted for

each tube from the preceding step field measurements (see Table II).

Table III. Cutoff frequencies predicted for the thin-tube model using the val-

ues given in Table I; the measured cutoff frequencies extracted from fits to

the data in Fig. 7; and the ratios h=d and ah=d2 calculated from fc;fit.

Tube fc;thin (Hz) fc;fit (Hz) h=d ah=d2

Copper #1 942(20) 946(2) 0.381(8) 1.00(4)

Aluminum 691(8) 710(1) 0.366(4) 1.03(2)

Copper #2 335(5) 327(1) 0.457(7) 0.98(2)
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APPENDIX A: SOLUTIONS FOR THE CONDUCTING

TUBE OF ARBITRARY THICKNESS

For the general problem of a uniform, axial field BoðtÞ
¼ BoðtÞ ẑ applied to a non-magnetic, conducting tube of any
thickness, one must solve the diffusion equation in the bulk
of the tube, subject to boundary conditions. For this geome-
try, Eq. (2) becomes

@2Bzðq; tÞ
@q2

þ 1

q
@Bzðq; tÞ
@q

¼ l0r
@Bzðq; tÞ

@t
: (A1)

Solutions are provided below; derivations are found in the
accompanying references.

For a step field BoðtÞ ¼ Bo for t � 0, the solution for the
internal field subject to initial condition Bið0Þ ¼ 0 can be
written as20,21,23

BiðtÞ ¼ Bo 1�
X1
n¼1

cne�t=sn

 !
; (A2)

with coefficients

cn ¼
4

a2

J0ðbcnÞJ2ðacnÞ
c2

nðJ2
0ðbcnÞ � J2

2ðacnÞÞ
(A3)

and time constants

sn ¼
l0r
c2

n

; (A4)

where cn is the n-th root of the equation

J0ðbcÞY2ðacÞ � Y0ðbcÞJ2ðacÞ ¼ 0; (A5)

and J� and Y� are Bessel functions of the first and second
kind of order �. After sufficient time has passed
ðt > l0r=c

2
1Þ, the field within the conductor volume can

described by the n¼ 1 term only. In this case, the field is
once again given by Eq. (8) with time constant20

s ¼ l0r

c2
1

: (A6)

For an ac field BoðtÞ ¼ Bo e�ixt, the solution for the com-
plex amplitude of the internal field is8,22

BiðxÞ ¼ Bo
2

z2
i

I0ðzoÞK2ðziÞ � K0ðzoÞI2ðziÞ½ ��1; (A7)

where zi ¼ ð1� iÞa=d; zo ¼ ð1� iÞb=d, and I� and K� are
modified Bessel functions of the first and second kind of
order �. One can show that this is equivalent to the result
given by �I~niguez et al.,11 keeping in mind that the latter
employs eixt for the temporal dependence of the applied
field, which leads to a conjugate solution.

Finally, based on the discussion in Sec. II, the Laplace
transform of BiðtÞ for the step response divided by the
Laplace transform of the step function (1=s) should lead to
the complex amplitude BiðxÞ for the steady-state sinusoidal
response. The procedure is trivial here and starting from
Eq. (A2) one quickly arrives at

BiðsÞ ¼ Bo 1� s
X1
n¼1

cnsn

1þ sns

 !
; (A8)

which evaluated at s ¼ �ix gives an alternative form of
Eq. (A7). We have shown the two solutions to be numeri-
cally equivalent for the tube parameters and frequency range
studied here. We did not attempt to prove mathematical
equivalence, although it appears the necessary details can be
gleaned from the work of Jaeger.23

The solutions presented in this appendix are also valid for a
non-magnetic, conducting tube in a uniform, transverse mag-
netic field.22,23 As a result, they also hold for a uniform field
applied at any angle to the axis of the tube. This is not the case
for the more general scenario of a magnetic tube, however.21–23

APPENDIX B: NUMERICAL OPTIMIZATION OF

THE DRIVE COIL FOR IMPROVED

HOMOGENEITY

We originally built a standard solenoid comprising two layers
of 100 evenly spaced windings to serve as a drive coil. The sole-
noid was wound with #32 AWG enameled magnet wire on a
3D-printed former. We found the time constant of this coil was
greater than that of the Hall-effect sensor (see Fig. 2), so we
decided to re-make it with the same dimensions and wire but
using only 50 windings per layer. We also took this opportunity
to optimize the winding pattern to provide greater field homoge-
neity over the length of the tube samples. While this does offer
greater fidelity with our theoretical models, it is not critical for
obtaining satisfactory results, and preliminary tests with our
original solenoid did yield nearly identical time constants and
cutoff frequencies to those reported above.

The details of the optimization algorithm are given below.
The final winding pattern and 3D former can be seen in Fig. 1.
The specific locations of the current loops are given in
Table IV, allowing one to easily duplicate our coil or scale it to
any desired radius. The calculated magnetic field profiles of the
optimized coil and the original solenoid are shown in Fig. 8,
along with those of the well-known Lee-Whiting and Helmholtz
designs39 for comparison. The parameters of the various coils
are summarized in Table V. For the Lee-Whiting and
Helmholtz coils, we considered two designs: fixing either their
length or their radius to equal those of our solenoid and opti-
mized coil. Measurements of the field profile along the axis of
the optimized coil are also shown in Fig. 8 and confirm the
expected improvement in homogeneity. Accurate measurements
of the off-axis field are more challenging to achieve and were

Table IV. The axial positions of the current loops comprising the optimized

coil in ascending order by column. The values, normalized to the coil radius

R and rounded to the third decimal point, give the distance zi to the i-th loop

on either side of the central plane of the coil (z¼ 0). For our coil

R¼ 2.28 cm, which is the average radius for the two layers of #32 AWG

wire (thickness 0.2 mm).

6zi=R

0.163 0.887 1.744 2.350 3.129

0.234 1.195 1.933 2.997 3.140

0.426 1.250 2.098 3.052 3.396

0.525 1.261 2.201 3.063 3.451

0.745 1.555 2.339 3.118 3.505
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not pursued here. However, for an axisymmetric coil such as
this, the constraint of Maxwell’s equations ensures that the
homogeneity of the field away from the central axis must simi-
larly improve.40

Our design optimization was performed by considering
the net axial field produced by the sum of contributions from
the symmetric pairs of current loops1–3 comprising the coil

BðzÞ ¼
XN=2

i

l0R2I=2

ðR2 þ ðz� ziÞ2Þ3=2
þ l0R2I=2

ðR2 þ ðzþ ziÞ2Þ3=2
;

(B1)

where zi is the distance to the i-th loop on either side of the
central plane of the coil, and the current I was set to unity.
To begin, all loops are evenly spaced as per a regular sole-
noid. Optimizing the axial field homogeneity over a distance
zopt requires minimizing the integralðzopt

0

����BðzÞ � Bð0Þ
Bð0Þ

���� dz: (B2)

This was done by randomly selecting a pair of symmetric
loops and displacing them a distance dz away from and
towards z¼ 0. If either displacement reduces Eq. (B2), the
changes are saved and another pair is randomly selected;
otherwise, the changes are discarded. Random selection con-
tinues until further displacement of all pairs does not result
in an improvement, in which case the value of dz is
decreased. Once dz is reduced beyond a set minimum thresh-
old value (typically given by the resolution of the 3D
printer), the program exits and saves the final zi values.

To prevent overlap and wire grooves with a separation
wall smaller than printing capabilities, additional constraints
are placed on the current loop locations. If moving a pair pla-
ces their wires within a minimum threshold distance relative
to another pair, two calculations are performed. The first
bundles the neighboring wires such that they form adjacent
windings within a single groove. Alternatively, the wires are
spaced exactly by the minimum threshold value. If either
scenario improves field homogeneity, the changes are saved;
otherwise, they are discarded.
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