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Abstract. This article presents an approach to performing the task of
visual search in the context of descriptive topological spaces. The pre-
sented algorithm forms the basis of a descriptive visual search system
(DVSS) that is based on the guided search model (GSM) that is mo-
tivated by human visual search. This model, in turn, consists of the
bottom-up and top-down attention models and is implemented within
the DVSS in three distinct stages. First, the bottom-up activation pro-
cess is used to generate saliency maps and to identify salient objects.
Second, perceptual objects, defined in the context of descriptive topo-
logical spaces, are identified and associated with feature vectors obtained
from a VGG deep learning convolutional neural network. Lastly, the top-
down activation process makes decisions on whether the object of interest
is present in a given image through the use of descriptive patterns within
the context of a descriptive topological space. The presented approach
is tested with images from the ImageNet ILSVRC2012 and SIMPLIcity
datasets. The contribution of this article is a descriptive pattern-based
visual search algorithm.

Keywords: Human visual search, guided search model, bottom-up at-
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logical space, descriptive proximity, descriptive set intersection, convolu-
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1 Introduction

The problem considered in this article is the automation of visual search mo-
tivated by behaviour performed by the human visual system. The problem of
visual search is the process of identifying an object in our field-of-view (FOV)
amongst many distractor objects, i.e. objects that are not the object of interest.
This visual search and it is dependent on our ability to direct visual attention.
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Council of Canada (NSERC) Discovery Grant 418413, and the Faculty of Graduate
Studies at the University of Winnipeg. Also, special thanks to Keith Massey for
developing the code that produced the VGG object descriptions.
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This is a complex task that humans perform seamlessly. The aim of visual search
systems are to automatically mimic human behaviour when processing the out-
put of optical sensors, whether images or frames in a video sequence. The task
of visual search performed by the human visual system is an active area of re-
search in psychology [1]. The solution presented here is based on the definition
of visual search as a type of perceptual task that directs attention [2]. In this
context, perceiving particular objects is an act of selective attention, where the
selective attention mechanism serves to link the processes of perception, action
and learning [3].

The attention model used in this work is the guided search model (GSM) [4],
which consists of modelling two types of visual search-based selective atten-
tion mechanisms: namely, bottom-up and top-down models. With respect to the
GSM, the bottom-up approach focuses on modelling salient regions in the FOV.
On the other hand, the top-down attention approach models the selection of a
desired object from among salient regions identified by the bottom-up method,
where salient regions are matched to some representation of the desired object
in human memory. From a systems point of view, the top-down approach is a
user-guided attention model.

Practical application of the GSM requires a theoretical framework to re-
late information captured in digital images to perceptual objects in the FOV.
Inspired by [5-8], this work implements the GSM within the context of descrip-
tive topological spaces, where the perceptual objects are pixels obtained from
digital images. Here, the bottom-up model is implemented by the graph-based
visual saliency (GBVS) method [9], and the top-down model is achieved with
descriptive topological spaces and a descriptive proximity relation. Results are
generated by using a digital image to represent an object of interest, called a
query image, which is compared with other images from an image dataset. The
solution consists of generating saliency maps (using the approach in [9]) from two
images under consideration and using a descriptive proximity relation — defined
within a descriptive topological space — in making decisions on the presence of
query objects.

This article is based on the work reported in [10], and the contribution of
this work is the Descriptive Visual Search System (DVSS) defined in the context
of descriptive topological spaces. The DVSS represents the first attempt of using
a descriptive pattern-based visual search algorithm, as well as the first use of
convolutional neural networks to generate perceptual object descriptions within
a perceptual system. Similarly, this article introduces a novel tolerance-based
extension of descriptive intersection for use in the DVSS. Finally, the article
is organized as follows. Section 2 presents background material on the visual
search program and near set theory. Section 3 gives the theoretical framework
implemented in the DVSS. Section 4 describes the implementation details of
the DVSS, and Section 5 presents results and discussions. Finally, the article is
concluded with Section 6.
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2 Background

This section provides context for visual search models and descriptive near set
theory, both of which are used to produce the DVSS.

2.1 Visual Search Psychological Model

Visual search is the act of finding a visual object! of interest in an FOV con-
taining many distractor objects. This problem is considered a perceptual task,
where the focus, within the human visual system, is to direct attention. In our
case, we aim to mimic the human ability to quickly and effortless find objects
of interest in our FOV [2]. The model of human visual attention used in this
article has two aspects, namely bottom-up [11] and top-down attention [3]. The
bottom-up approach is a type of instinctual, non-guided attention mechanism
and is scene-dependent. In contrast, the top-down approach is a user-guided
attention mechanism, or task-dependent.

There are four main psychological models that could be a basis for a compu-
tational model for visual attention, namely feature integration theory (FIT) [12],
biased competition (BC) hypothesis [13], integrated competition hypothesis (IC)
[14], and guided search model (GSM) [4]. Based on the application, there are
two approaches to modelling the human approach to searching for objects in
our FOV. One is object-based [15]. It involves the analysis of parts of an object
and it may be used to recognize an object. The other is space-based [15], and
it is concerned with the location or position of an object. Feature integration
theory [12] is usually used for space-based searching tasks and is typically asso-
ciated with bottom-up attention models. It assumes that features come first in
the perceptual process and are later combined to form objects. Here, the visual
scene is coded along multiple feature dimensions, including colour, orientation,
texture, and intensity. These features are then fused together when attention is
directed at a specific location (hence the space-based moniker) in the FOV to
form an object. In contrast, the biased competition hypothesis [13] maintains
that, regardless of space-based or object-based, the selection according to atten-
tion is a biased, competitive process. The competition is among different objects
or local area to determine which of them is a reasonable selection according to
the relevant task. Further, [13] asserts that the competition is biased toward
bottom-up attention in order to benefit local inhomogeneity, i.e. locations most
distinct from their surroundings are likely to be the winner of the competition
for attention. On the other hand, the top-down attention model in the BC hy-
pothesis shifts the bias based on items relative to the current task, such as visual
search. Finally, the integrated competition hypothesis [14] is an extension of the
BC hypothesis, which posits that any property of the object could be a basis
for guiding attention. In the other words, object properties are also treated as
task-relevant features.

! The term perceptual object has specific meaning in descriptive set theory and per-
ceptual sytems. Hence, we will use visual object to represent any salient object in an

FOV.
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2.2 Near Sets

In this work, visual objects inherent to digital images are denoted by sets within a
descriptive topological space, and the aim is to assess the nearness or apartness
between these disjoint sets. In other words, quantifying the nearness between
sets is the basis for determining the similarity of visual objects. Inherent to
the study of perceptual similarity is the idea of nearness and tolerance, both
of which have a rich and rigorous mathematical history [5,16]. The idea of sets
of similar sensations was first introduced by J. H. Poincaré in which he reflects
on experiments performed by E. Weber in 1834, and G. T. Fechner’s insight in
1850 [17-20]. Poincaré’s work was inspired by Fechner, but the key difference
is Poincaré’s work marked a shift from stimuli and sensations to an abstraction
in terms of sets together with an implicit idea of tolerance. Next, the idea of
tolerance is formally introduced by E. C. Zeeman [21] with respect to the brain
and visual perception. This idea of tolerance is important in mathematical ap-
plications, where systems deal with approximate input and results are accepted
with a tolerable level of error, an observation made by A. B. Sossinsky [17], who
also connected Zeeman’s work with that of Poincaré’s. In addition to these ideas
on tolerance, F. Riesz first published a paper in 1908 on the nearness of sets [22,
23], initiating the mathematical study of proximity spaces and the eventual dis-
covery of descriptively near sets. Specifically, in 2002, Z. Pawlak and J. Peters
considered an informal approach to the perception of the nearness of physical
objects such as snowflakes that was not limited to spatial nearness [24]. In 2006,
a formal approach to the descriptive nearness of objects was considered by J.
Peters, A. Skowron and J. Stepaniuk in the context of proximity spaces [23,
25-27]. In 2007, descriptively near sets were introduced by J. Peters [28,29],
followed by the introduction of tolerance near sets [30,31]. Recently, the study
of descriptively near sets has led to algebraic [32,33], topological and proximity
space [6-8] foundations of such sets.

Originally, the notion of nearness between sets, introduced by Riesz, was
based on a spatial relationships between sets, called proximity. As has been
mentioned, this idea of proximity between sets was recently expanded to include
both spatial quantitative interpretation and a non-spatial qualitative interpreta-
tion, called descriptive proximity [28,29,34,5,6]. In this article, the qualitative
interpretation of the notion of proximity between sets (i.e. description-based) is
used. This idea of descriptive proximity between sets is also know as descriptive
near set theory.

3 Preliminaries

This section presents descriptive near set theory, which is primarily used in the
last stage of the proposed system. However, the ideas presented in this section
form a narrative that underlies the entire approach. In particular, visual search
is a type of perceptual task that is complementary to the basic inspiration of
descriptive near set theory, namely that humans make decisions on nearness of
disjoint sets of objects based on perceived features associated with the objects.
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In fact, objects in descriptive set theory are labelled perceptual objects and the
fundamental structure that introduces descriptive near set theory is a perceptual
system, which is where this section begins.

3.1 Perceptual System

Sets of perceptual objects and their descriptions form a perceptual system. To
begin, a perceptual object [34] is something perceivable that has its origin in
the physical world. Thus, perceptual objects are objects which can be perceived
in the physical world, using the senses of sight, touch, taste, smell and hearing.
However, the focus of this work is visual search and the sense of sight. Thus, in
this work the descriptions of the objects are all extracted from digital images.
In general, a description is a real-valued tuple representing features of a percep-
tual object. Each description is a vector of real-valued features associated with
each respective object. Continuing on, a perceptual system consists of both per-
ceptual objects and probe functions [34]. Typically, these values are extracted
by a series of functions, called a probe function [28,35]. A probe function is a
real-valued function representing a feature of a perceptual object [5]. A set of
probe functions are used to generate the feature vector that provide descriptions.
In this work, probe functions are defined in the context of deep convolutional
neural networks [36] and are used to produce feature vectors for each object.

Definition 1 Perceptual System [34]. A perceptual system (O,F) consist of
a non-empty set O of sample perceptual objects and a mon-empty tuple F of
real-valued functions ¢ € F such that ¢ : O — R.

Next, there is a need within a perceptual system to characterize perceptual
objects in O. As a result, an object description is given as follows.

Definition 2 Object Description [37,38]. Let (O,F) be a perceptual system,
then the description of a perceptual object x € O 1is a feature vector given by

Pr(x) = (¢1(7), P2(2), -, @i (7). (7)) ,

where 1 is the length of the vector g, and each ¢;(x) in Pp(x) is a probe function
value that is part of the description of the object x € O.

Typically, object descriptions are also referred to as feature vectors in other
disciplines. Finally, a descriptive neighbourhood of an object is given by the
following.

Definition 3 Descriptive Neighbourhood [6] Let z,y € O be perceptual
objects with object descriptions given by ®(xz),P(y), and let ¢ € R. Then, a
description-based neighbourhood is defined as

Ny ={y € O : |P(z) — D(y)| < €}.
A point y is a member of Ny, if and only if, |P(x) — P(y)| < €.

This definition will be used to produce neighbours of a certain point.
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3.2 Descriptive Topologies

Descriptive topological spaces are a significant portion of the proposed visual
search system, and, since the human FOV is simulated with digital images, this
section introduces a descriptive topological framework defined in the context of
digital images [6]. Recently, much work has been reported regarding descriptive
topological spaces that are defined with respect to the descriptive intersection
and union of open sets [5, 6, 39, 7,40]. Keeping this in mind, a topology is defined
as follows.

Definition 4 Topology [40]. For a given set, X, a topology, 7, on X is a
family of subsets of X (called open sets) such that:

1. X and O are in T,
2. unions of members of T are in T, and
3. finite intersections of members of T are in T.

The pair (X, 7) is called topological space, or, in the other words, a nonempty
set X with a topology 7 on it is a topological space [40]. Correspondingly, a
descriptive topological space is obtained when considering set descriptions and
descriptive-based set operators [6], which are defined below.

Definition 5 Set Description [6,39,37]. Let A C O be a set within a percep-
tual system (O,T), then the set description of A is defined as

D(A) ={P(a) : a € A}.

A new form of topology — called descriptive topology — requires new operators
analogous to union and intersection. These are given next, both of which use
Defn. 5. Note, the descriptive union and the union operators are equivalent (see,
e.g., [39]). Thus, a new definition is not given for set union. On the other hand,
the descriptive set intersection operator is defined as follows.

Definition 6 Descriptive Set Intersection [5,6]. Let A and B be any two
sets. The descriptive (set) intersection of A and B is defined as

A 0 B={xc AUB:®d(z) € D(A) and $(z) € D(B)}.

Moreover, the formal properties of descriptive intersection depend upon the per-
ceptual system. Based on the definitions given above, a descriptive topology [40]
is defined next.

Definition 7 Descriptive Topology [40]. For a given set X, a descriptive
topology, ¢, on X is a family of subsets of X such that:

1. X and 0 are in 7o,
2. descriptive unions of members of 7¢ are in 7¢, and
3. finite descriptive intersections of members of T¢ are in Te.

Here, it is interesting to note that a descriptive topology depends on the un-
derlying perceptual system and it may, in fact, not be a topology. As a result,
Defn. 7 can be considered a straightforward translation of the standard definition
of topology into the presented descriptive framework and nothing more.
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3.3 Descriptive Proximities

A descriptive topology defines a structure that is a collection of sets contain-
ing objects with comparable descriptions. The aim in developing the presented
visual search system is to make decisions based on the degree of shared descrip-
tions within the topology. As a result, our system relies on the ability to quantify
the nearness of members of a descriptive topology. The first step in achieving
this goal is the definition of a proximity relation. Proximities are nearness rela-
tions among the subsets of X in a topological space (X, 7). In other words, a
proximity is a closeness or appartness relation on pairs of subsets of X. In [40],
two basic types of proximities are defined, namely traditional spatial proximity
and descriptive proximity. In [40], the traditional spatial proximity is considered
when nonempty sets that have spatial proximity are close to each other, either
asymptotically or with common points. In contrast, [40] defines descriptive prox-
imity as nonempty sets are close provided the sets contain one or more elements
that have matching descriptions.

There are a number of well-known proximities [6-8] such as the Cech [41],
Efremovic [42], Lodato [43], and Wallman [44] proximities. An example of the
simplest proximity, a Cech proximity, d., satisfies the following.

. D9l AVA C X,

. Ad.B e B, A,

. ANB#0= Aé. B,

LA (BUC) & Ab. Bor Ad. C.

N R

Finally, a specific descriptive proximity relation is defined below.

Definition 8 Descriptive Proximity Relation [45]. Given a perceptual sys-
tem (X,TF), with A, B € P(X), the descriptive prozimity relation is defined by

60 = {(A4, B) € P(X) x P(X): A0 B # 0}, (1)

where the notation A d¢ B reads A is descriptively close to B.

3.4 Descriptive Patterns

Patterns play a pivotal role in the presented approach to measuring the near-
ness or apartness of visual objects. The descriptive intersection of member sets
from two respective patterns is the basis for decisions regarding the presence of
visual query objects. These patterns, in turn, are created via pattern generators.
Beginning with patterns, the definitions for spatial and descriptive set patterns
are given as follows.

Definition 9 Spatial Set Pattern [7|. A spatial set pattern P contains sets
that are spatially near each other.

Definition 10 Descriptive Set Pattern [7]. A descriptive set pattern, Pg,
contains sets that are descriptively near a given set and possibly near each other.
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Relying on the definition of a set pattern, a pattern generator is defined as
follows.

Definition 11 Pattern Generator [7]. A pattern generator is a distinguished
set that is close to each set in the collection of sets in a set pattern.

3.5 Tolerance-Based Descriptive Intersection Operator

This section presents a new descriptive set operator based on tolerance spaces
and relations [21,17,46]. As is discussed below, sets formed in this work are
extracted from digital images, where decisions on the similarity of visual objects
contained in these images are based on features values extracted from image
pixels. The result is that comparison between patterns — generated from sets
representing visual objects — is the pivotal step. However, the output of probe
functions for two objects perceived to be the same is rarely an exact match [47].
As a result, the following operator was defined out of necessity for producing
results in presented real-world application.

Definition 12 Tolerance Descriptive Set Intersection [10]. Let A and B
be any two sets. The tolerance descriptive (set) intersection of A and B is defined
as
Aq}ﬂ B={a€ A beB:| P(a) — D) ||2< e},
N

where || - ||2 is the L? norm.

This new definition of descriptive set intersection provides for the introduction of
a nuanced version of the descriptive proximity relation. Recall Defn. 3 produced
a set of points that are neighbours of a certain point. However, the Defn. 12
gives a similarity measurement between two sets of points.

Definition 13 Descriptive Tolerance Proximity Relation. Given a per-
ceptual system (X,F), with A, B € P(X), the descriptive tolerance proximity
relation is defined by

60.c = {(A,B) € P(X) x P(X): A [ B#0}. 2)

4 Descriptive Visual Search System

The proposed descriptive visual search system (DVSS) consists of both the GSM
bottom-up and top-down attention models and is implemented in three distinct
stages. First, the bottom-up activation process is used to generate saliency maps
and to identify salient objects. Second, perceptual objects, defined in the con-
text of descriptive topological spaces, are identified and associated with feature
vectors (i.e. object descriptions) obtained from a VGG [48] deep learning convo-
lutional neural network. Lastly, the top-down activation process makes decisions
on whether the object of interest is present in a given image through the use of
descriptive patterns within the context of a descriptive topological space.
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4.1 Bottom-Up Attention

The aim of bottom-activation is to guide attention to salient regions of the FOV.
These regions can be mapped with respect to the FOV producing saliency maps.
In other words, a saliency map indicates the degree in which a particular region
is unusual or different from its surrounding regions. Within the DVSS, saliency
maps are implemented using digital images, which means a region’s saliency
value is quantified by grey levels. More specifically, each pixel in the saliency
map represents a saliency value. The DVSS uses GVBS [9] to translate the
RGB pixel values into saliency values using graph theory and ultimately produce
these maps. Further, the salient regions of these maps are then used to identify
perceptual objects, i.e. pixels from the original image, that will subsequently
be used to create a pattern generator. It is these generated patterns that are
finally used to make decisions on whether or not the (visual) object is contained
in a given FOV, i.e. a digital image. Finally, a predefined threshold is used to
determine which pixels in a saliency map constitute visual objects. Examples of
this process are given in Fig. 1.

(8) (h) (i)

Fig. 1. GVBS [9] saliency map examples. Columns from left to right: original image,
saliency map, detected salient object with bounding box.
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4.2 Convolutional Neural Network-Based Probe Functions

A pre-trained VGG network [48] was used to extract features in this work. In
general, convolutional neural networks (ConvNets) consist of one or more layers,
which are labelled as convolutional, fully connected, and pooling layers [49].
Convolutional layers are so named since each neuron develops (i.e. learns) a
filter during the training process which identifies different types of features within
the image. They are named convolution since the operation performed by each
neuron is analogous to the convolution operation between the filter and the input
to the neuron. Pooling layers down-sample the results from the former layer,
and neurons in fully connected layers connect all neurons in the previous layer
in order to infer classes from the output of the penultimate layer. Fig. 2 present
a visual example of a multilayer ConvNet. The VGG ConvNet was developed
by the Visual Geometry Group [48], and the VGG network used in this article
was pre-trained using the ILSVRC-2012 dataset [50]. This data set contains
1000 categories of images, split into training (1.3 million images), validation (50
thousand images), and testing (100 thousand images with missing class labels)
sets.

Feature maps

Feature maps

Feature maps

.
— AN

[ — —> Output

\ Feature vecters
N
Down sampling  Convolutions  Down sampling ]

Pooling layers Convolutional layer Pooling layers

1

Convolutions
‘Convolutional layer

Fully connected layers

Kernals

Kernals

Fig. 2. Example of a standard multilayer convolutional neural network.

In this work, a trained ConvNet was used to extract features (i.e. object
descriptions) for perceptual objects, where output from the layers were used to
produce probe function values (see, e.g., [51]). Any layer in the network could
be used as a feature extractor since ConvNets can generate features of visual ob-
jects ranging from low-level to high-level. Low-level features are associated with
lower levels of a ConvNet and usually describe some low-level digital image char-
acteristic (e.g. colour, texture, or edge orientation). They are termed low-level
features as they are closely related to pixel information and are far removed
from global representations of the visual objects in the image. On the other
hand, high-level features are associated with higher levels of the network and
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are related to the perceptual knowledge of the visual objects within the image.
This knowledge is represented by the classes identified by the neural network
(e.g. people, dog, bus). Further, current deep convolutional neural networks are
able to process large numbers of classes with very small differences between cate-
gories. For example, the classes of people, dog, and bus can be further expanded
to include categories such as seniors, kids, Husky, Chihuahua, school bus, char-
ter bus, etc. In all cases, features are produced by presenting an image to the
ConvNet input and forwarding outputs through the network until the desired
layer is reached. At this point, the features are the outputs of the neurons at
that level. In this paper, a 19 layer VGG network consisting of 16 convolutional
layers and 3 fully connected layers was used, and the features were extracted
from the 13*® convolutional layer of the VGG network [48]. Further, layer 13
produces object descriptions of length 512 for each perceptual object. Layer 13
was selected for the DVSS since this level corresponds to higher perceptual rep-
resentation of visual objects. This is important since the act of visual search does
not only rely on low-level features, such as colour or shape, but it also relies on
category knowledge and information. In other words, DVSS searchs for visual
objects of the same category, but which may have different colours or shapes. In
this case, high-level features produce better performance.

4.3 Top-Down Attention

Bottom-up activation guides attention to salient regions, associated with visual
objects, that are unusual from their surrounding area, but it does not actively
guide attention to visual objects that are the focus of the search. However, visual
objects identified by the bottom-up model could be candidate visual objects for
further consideration in the visual search process. Thus, in the GSM [4], a top-
down attention method is presented to model the act of visual search. This
process involves intersections between features associated with salient regions in
the FOV and features of the desired visual object, which are, somehow, stored in
memory. Thus, attention is based on the result of this comparison. The remainder
of this section describes how the top-down model is implemented in the DVSS.

Beginning from an overall perspective, the DVSS starts with two input im-
ages, where one is the query image, denoted (), and the other is a candidate
image C. The query image is a representation of the visual object that is the
focus of the search process, and it may contain several visual objects. However,
to start a searching task, only one query object is selected by the user. Typically,
query objects are identified by some domain expert, and this process is analo-
gous to the long term memory discussed in [3]. The candidate image represents
the FOV, containing one or more visual objects, all of which are considered as
candidate objects for the searching task.

Secondly, GBVSJ9] is applied to both query and candidate images, and the
output is two saliency maps [11]. The saliency maps are denoted as QS and
C'S for the query image and candidate image, respectively. As was mentioned,
saliency maps are represented by greylevel images, and the pixels associated
with salient visual objects are determined by defining a greylevel threshold on
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the saliency maps. Any saliency map pixels with values above this threshold
are considered part of a salient visual object. Keeping this in mind, only one
visual object is stored in memory for the query image, while all the candidate
visual objects are stored into memory. In terms of storing the visual objects, the
coordinates of pixels associated with each object are stored in the memory.

Continuing on, the top-down activation model is simulated and implemented
as follows. Let X = QU S, and let K C X be a set of perceptual objects (i.e.
pixels) representing a salient visual object identified using QS or C'S. Then, a
spatial pattern generator, G, is formed by selecting every [** member of K, where
[ is some application dependent quantity. Next, descriptive neighbourhoods are
found for each member of G to produce a descriptive pattern Py = {Ng(,) : €
G}. In other words, all the descriptive neighbourhoods are generated by members
of G to form a descriptive pattern, Pg. In this light, G, and G, represent pattern
generators formed from query and candidate visual objects, respectively, and
they generate descriptive set patterns for query and candidate objects that are
denoted by Pj and Pg, respectively.

Recall, the GSM relates bottom-up and top-down attention models through
the intersection of features of salient regions identified from bottom-up mecha-
nisms with knowledge or memory of the visual object that is the focus of the
search. Thus, the DVSS operates in the same manner by searching for non-empty
intersections between members of the query and candidate patterns. In particu-
lar, each member of PJ is compared to each member of P§ using Def. 12. The
result of these intersections (i.e. the cardinalities) are then accumulated using a
nearness measure inspired by [39]. This process is formalized in Algorithm 1.

Here, it is important to make several observations regarding Algorithm 1.
First, as stated in line 14, the nearness of members of the respective patterns
is determined by the fraction of objects present in the tolerance descriptive set
intersection versus the number of objects in the union of the two sets. Moreover,
any value of s > 0 implies that the two sets satisfy the descriptive tolerance prox-
imity relation given in Eq. 2. Next, each member of the query object pattern,
P1, is compared with all the members of the candidate pattern, P§ in order to
find the most descriptively close (near) part of the candidate object, and only
the maximum value of s will be used to represent this relationship. Therefore,
the final value S is the sum of all the maximum values which are normalized by
the total number of members in Pg. This value S is the final basis for determin-
ing whether the query visual object is present in the FOV represented by the
candidate image.

5 Results and Discussion

The DVSS was tested by performing image retrieval. In this setup, the query
image acts as the object that is the focus of a visual search task and the other
images in the dataset represent different visual scenes presented to the FOV.
Particularly, images from categories other than the query image represent dis-
tractor objects and images from the same category as the query represent the
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Algorithm 1: Pattern Based Visual Search
Input : A query image QI, a threshold T'
Output: A candidate image C'I with objects in bounding box
1 Bottom up;
2 QS + GBVS(Q) (Section 4.1);
3 CS + GBVS(C);
4 Q + Selected query object in QS (i.e. Qr C QS);
5 C < All visual objects in C'S;
6 Top down; G, < Generator(Qy) (Def 11);

7 for C € C do

8 G. + Generator(C);

9 Pl < PatternGenerator(G4) (Section 4.3);
10 PG < PatternGenerator(Ge);
11 for PQ € P} do
12 mazs < 0;

13 for PC' € Pg do
'PQ N PC
D,e .
H = TPQuPC
15 if s > maz, then
16 | maz, + s;
17 | S« S+ mazs;
5 .
18 S @,
19 if S > T then
20 | CI + Boundingbox(C)

objective of the search. Image retrieval of this nature, i.e. based on the content
contained in the images, is called content-based image retrieval (CBIR) [52]. Fur-
ther, CBIR systems are typically evaluated using precision vs. recall plots [53],
which is also the case here. Finally, two data sets were used to generate the re-
ported results, namely the ImageNet ILSVRC2012 [54, 55] and SIMPLIcity [56]
datasets.

5.1 Experimental Setup

The ImageNet dataset experiment consisted of 10 categories from the ILSVRC20-
12 training set, where each category contains 1300 images. Moreover, 10 images
from each category were randomly selected as query images. These query images
were compared to the remaining 12,900 images, where each comparison produced
an S value from line 18 of Algorithm 1. The SIMPLIcity dataset experiment also
consisted of 10 categories where each category contains 100 images. In this ex-
periment, each image, in turn, is considered a query image and compared to all
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the other images in the dataset for a total of 500,500 comparisons. The SIM-
PLIcity dataset was also used since the resolution is lower than the ImageNet
dataset, which allowed for the larger number of comparisons in a realistic times-
pan. Again, the images are ranked based on line 18 of Algorithm 1. These ranked
S values are sorted in descending order, where the largest value represents the
results of the first query, the second value the results of the second query, etc.
Precision/recall plots are then created based on these values. In the ideal case,
all images from the same category as the query are retrieved before any images
from other categories. In this case, precision is 100% until recall reaches 100%.

5.2 ImageNet Results

Figs. 3 & 4 contain the average precision vs. recall plots for each category of the
ImageNet dataset. Notice, the results in Figs. 3(c), 4(a), and 4(e) indicate that
categories bison, school bus, and pepper performed quite well, while the remaining
categories did not. Specifically, most curves experience a step drop before recall
reaches 20%. These plots could be interpreted as poor performance, however 20%
recall corresponds to at least 260 images retrieved out of 12,900 images and is
more than a typically user would be interested in an image retrieval system. As a
result, the average precision of the top 20 queries for each category is presented
in Table 1. Observe, the results are much better, and the top categories (i.e.
bison, school bus, and strawberry) correspond to the best plots mentioned above.

Table 1. ImageNet precision values for top 20 retrieved images from each category
averaged over 10 query images.

Category Precision Category Precision

Frogs 0.655  Socks 0.625
Turtles 0.635 Teapot 0.655
Bison 0.985  Umbrella 0.465

Cellphones  0.610  Bell pepper  0.935
School Bus  0.920  Strawberry  0.760

Average 0.7245

5.3 SIMPLIcity Results

The SIMPLIcity dataset was used to further demonstrate the utility of the pro-
posed approach since only 10 query images per category were used in the Ima-
geNet experiment, whereas all images in the SIMPLIcity dataset were used as
query images. Additionally, the SIMPLIcity dataset allowed for comparison with
four other CBIR methods [57-60]. These methods are briefly summarized in [10],
and they all use low features to represent global content. In contrast, the DVSS
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Fig. 3. ImageNet precision vs recall plots for Categories: (a) Frog, (b) turtle, (c¢) bison,
and (d) cellphone.

focuses on salient visual objects and is more localized. Moreover, the features are
extracted from higher network levels of the VGG ConvNet that typically pro-
duce features associated with visual objects in the images rather than low-level
features such as texture or edges, and they are processed within the context of
a descriptive topological space. These differences mean the DVSS makes judge-
ments more in line with human perception and understanding of the content
within the images. The results of SIMPLIcity experiment are given Table 2.

Notice the proposed approach performs well in the categories Africans and
buses. Markedly, in these categories the DVSS is better than almost all of the
other methods, and the DVSS produces the best results with the buses category.
On the other hand, the other methods performed very well on the dinosaurs
category, but the DVSS does not. Upon further investigation, the Africans and
buses categories have analogous categories contained in the training set of the
VGG ConvNet[48]. For instance, the ILSVRC-2012 dataset contains images in
categories people, school buses, and minibuses. What is more, based on the first
experiment, the school bus category had very good performance on both precision
versus recall plots and top 20 retrieval. Therefore, the DVSS performs very well
on the SIMPLIcity buses category. On the other hand, the VGG network was
not trained with, for example, dinosaur images. Furthermore, the other methods
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Fig. 4. ImageNet precision vs recall plots for Categories: (a) School bus, (b) socks, (c)
teapot, (d) umbrella, (e) bell pepper, and (f) strawberry.

perform quite well on this category because all these images are very similar to
each other and are very different from the other categories, thus making for a
very clear separation in low-level feature space. Similarly, the other SIMPLIcity
categories do not exist in the VGG neural network either [48].

There are other fundamental reasons explaining why the DVSS did not per-
form as well as the other methods on the SIMPLIcity dataset. For instance,
the beaches category is characterized by images primarily consisting of back-
ground information representing the beaches, sea, and sky. However, the DVSS
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was designed to search for salient regions and visual objects in the FOV. Ex-
amples in the beaches category include people, or umbrellas. As a result, the
DVSS uses these objects for quantifying the nearness or apartness of a candi-
date image with that of a query image instead of the background information
which contains the defining features of the category. Another issue compound-
ing the problem is that 19-layer VGG ConvNet down-samples the original input
image many times, and and SIMPLIcity images are much lower resolution than
the ILSVRC-2012 dataset. Thus, once the images are down-sampled, the corre-
sponding visual objects have only a very few points, which may further weaken
the results for categories such as elephants and horses. Nevertheless, this SIM-
PLIcity comparisons was important for two reasons. First, it demonstrated that
the DVSS performs very well on visual search tasks for sample visual objects
that were represented by the VGG training data set. Secondly, the average pre-
cision values from Table 1 are better than three of the four methods used for
SIMPLIcity comparison. Of course, the results are from different datasets, this
observation places the Table 1 values in context for the problem of CBIR.

Table 2. Comparison between the DVSS and four existing approaches using the top
20 precision values for the SIMPLIcity dataset

Category [57] [58] [59] [60] DVSS
Africans 0.5315 0.6975 0.7825 0.683 0.7115
Beaches 0.4385 0.5425 0.4425 0.540 0.3870
Buildings 0.4870 0.6395 0.5910 0.562 0.2950
Buses 0.8280 0.8965 0.8605 0.888 0.9420
Dinosaurs 0.9500 0.9870 0.9870 0.993 0.2570
Elephants 0.3485 0.4880 0.5900 0.658 0.3180
Flowers 0.8835 0.9230 0.8535 0.891 0.4915
Horses 0.5935 0.8945 0.7495 0.803 0.1310
Mountains 0.3080 0.4730 0.3655 0.522 0.3730
Food 0.5040 0.7090 0.6440 0.733 0.2305
Average 0.5873 0.7211 0.6866 0.730 0.4137

6 Conclusion

This article presented the DVSS that automates the task of visual search using
descriptive topological spaces defined in a perceptual system based on probe
functions from a convolutional neural network. The results indicate that the
proposed solution works very well when employed on data that was also part
of the ConvNet training set. As a result, the proposed approach has poten-
tial for widespread use and application as machine learning methods based on
convolutional neural networks are becoming extremely popular and prevalent.
Future work will consist of improvements in execution runtime as the current
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approach demonstrates inherent parallelism, but was implemented serially on a
CPU rather than using highly parallel co-processors (such as GPUs). Addition-
ally, more investigation will be performed on improving accuracy through using
larger convolutional neural networks and larger training datasets.
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