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Abstract 

In this thesis, I focus on exploiting electroencephalography (EEG) signals for early seizure 

diagnosis in patients. This process is based on a powerful deep learning algorithm for times series 

data called Long Short-Term Memory (LSTM) network. Since manual and visual inspection 

(detection) of epileptic seizure through the electroencephalography (EEG) signal by expert 

neurologists is time-consuming, work-intensive and error-prone and it might take a couple hours 

for experts to analyze a single patient record and to do recognition when immediate action is 

needed to be taken. This thesis proposes a reliable automatic seizure/non-seizure classification 

method that could facilitate the identification process of characteristic epileptic patterns, such as 

pre-ictal spikes, seizures and determination of seizure frequency, seizure type, etc. In order to 

recognize epileptic seizure accurately, the proposed model exploits the temporal dependencies in 

the EEG data. Experiments on clinical data present that this method achieves a high seizure 

prediction accuracy and maintains reliable performance. This thesis also finds the most efficient 

lengths of EEG recording for highest accuracies of different classification in the automated seizure 

detection realm. It could help non-experts to predict the seizure more comprehensively and bring 

awareness to patients and caregivers of upcoming seizures, enhancing the daily lives of patients 

against unpredictable occurrence of seizures. 
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Chapter 1 

Introduction 

In this thesis, I focus on the development of a Deep Neural Network model to improve the 

accuracy of seizure detection by electroencephalogram (EEG) signals. This introductory chapter 

sets the general context of this research. First, we start with the research motivation, by a brief 

description of the problems and the necessary background information about epilepsy to 

understand the scope of the problem that is going to be addressed in this research. Then, the 

objective of the research is presented. This chapter ends with an overview of the thesis 

organization. 

 

1.1 Motivation 

Diagnosis of diseases through manual analysis of highly complex medical data is not only 

time-consuming but also error prone. Development of machine learning and pattern recognition 

enable scientists to provide new approaches to automate and facilitate some parts of these labor-

intensive work partially. This progress not only proliferates across health care research areas but 

also multidisciplinary studies like brain-computer interface also take advantage of this approach.  

 

Brain-computer interface is the emerging field of this research that integrates multifarious 

disciplines including neuroscience and computer science. This field of research mainly studies the 

brain function and neural electrical activity of neurons by analysis of the electroencephalography 
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(EEG). The EEG signal has become a standard method for learning about brain functionality and 

neural electrical activity of neurons [ARC12a]. 

 

The extracted knowledge from the brain can be applied to a wide range of applications, 

including to stop a driving car once the braking intent comes to the driver’s mind, it can be used 

to enable disabled people to control their wheelchair, or it can be used for diagnosis of lies in court 

among other things. There are vast applications which are driven from EEG signals, either for 

disabled people or healthy people, all of which refer to brain computer interfaces (BCIs). In the 

health care realms, scientists try to investigate and analyze different abnormalities within the brain 

signals to detect the diseases and understand their causes. Today’s state of the art technology 

enables diagnosis with help from machine learning (ML) and deep learning techniques to automate 

what had previously been done by experts while consuming large amount of time. 

 

The neuroscience experts analyze EEG signals and characteristics of brain states. This is 

done by brain signal processing that aims to understand different complex states of the brain when 

brain responses are different at a specific time point between two states. Comparing these different 

states of the brain is called “univariate analysis”. In fact, this method decodes an individual’s 

cognitive or perceptual responses of human beings [HUL19]. 

 

However, it requires a lot of work because it is quite hard to extract meaningful information 

and find an individual feature of interest from high-dimensional, noisy EEG data and signals may 

become redundant in EEG data when they describe different things and intrinsically correlate to 

each other. In addition, in some cases, including in diseases, we have access to a limited number 

of samples in neuroimaging, this constrains researchers’ ability to build an ideal model with many 
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of parameters and factors. Electroencephalography (EEG) is a key component in the evaluation of 

epilepsy. Epilepsy is placed as one of the most common diseases after migraine in the world 

according to the World Health Organization’s figures [ENG12]. The EEG provides important 

information about background EEG and epileptiform discharges, and it is required for the 

diagnosis of specific electroclinical syndromes [NOL04]. This thesis aims to diagnose this 

common neurological disease epilepsy through EEG signals with use of a deep neural network 

algorithm.  

 

1.2 Epilepsy And Epileptic Seizures  

According to the latest World Health Organization (WHO) statistics [ENG12], about 50 

million people worldwide suffer from epilepsy. It could be considered a life-threating peril for 

epileptic patients in their daily lives and restrict them from many activities such as acquiring and 

using a driving license. Patients with epilepsy are socially discriminated due to negative public 

attitudes and misconceptions of the disease. In fact, epilepsy is a neurological condition which 

might lead to two or more unprovoked seizures and appearance of abnormal behaviors of brain 

activities over a 24-hour day period. 

 

Epilepsy causes could be the result of brain injury, brain tumors, infections, nutritional 

deficiencies, calcium metabolism disorders, etc. Since neurons produce electrochemical impulses, 

they influence on other neurons that generate thoughts, movements, and feelings. In seizures, 

sudden changes in the electrical functioning of the brain in the cortex would disturb the normal 

pattern of neuronal behavior, causing strange emotions and behaviors, muscle spasms, loss of 

consciousness and other abnormalities. These abnormalities appear in the form of rapid spiking 
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waves on the EEG recording. Therefore, electroencephalography (EEG) plays an important role 

for accurate diagnosis and classification of different forms of epilepsy, and it also aids in 

recognizing mechanisms which lead to seizures in epileptic disorders. 

 

The unpredictable nature of epilepsy limits a human’s perception and behavior result in the 

patients and their family suffering from low quality of life and self-esteem. Hence, it has drawn 

the attention of many researchers from different disciplines to predict and detect epileptic seizures 

before its occurrence and take appropriate measures to minimize its aftermath. 

 

Analysis and research about seizures and epilepsy began in 1970 [MER70]. Manual seizure 

detection is time-consuming analysis of signals since they are violated by various artefacts and 

they encompass different components and epochs (periods) such as inter-ictal EEG, spikes, etc; 

hence differentiating them from each other requires specific expertise. The seizure occurrence 

pattern might change over time for each patient and this pattern may be different from one person 

to another person as well. 

 

To facilitate the diagnosis and consequently the treatment of epilepsy, this research's goal is 

to develop an automated and robust method that can identify the epileptic EEG signals during 

seizure activity and during seizure-free time. 

 

1.3 Objectives 

Available treatments against seizure can be medication, surgery, and electric stimulation. 

Drugs try to neutralize the excessive neuronal activity associated with a seizure. Epilepsy surgery 
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may reduce the number of seizure attacks and the long-term risk of brain damage. But neither of 

them can completely improve the quality of life of epileptic patients. Since brain surgery, has its 

own serious risks, including paralysis, speech issues, memory problems, loss of motor skills, and 

in some cases might lead to even more seizures and almost 30% of the patients who are drug-

resistant to epilepsy suffer from drug refractory epilepsy; therefore, these are not final solutions to 

epilepsy [LAR16]. 

 

Alternative approaches for seizure treatment could be electric stimulation before the seizure 

occurrence or warning devices that could be designed to alert of the upcoming seizures if there is 

some efficient way to predict seizures. These options are highly dependent on early prediction of 

the seizure.  

 

Recent research demonstrates that epileptic seizures are not unpredictable, recent 

investigations have demonstrated that seizures do not strike at random and (EEG) could be used 

as a tool for forecasting epileptic seizure attacks. Hence, the EEG can play a significant role in 

providing information to identify the occurrence patterns that indicate upcoming seizures. 

 

Detection of epileptic seizures based on machine learning has become one of the hottest 

topics over the last decade and researchers have proposed several methods to develop EEG-based 

seizure prediction methods. However, there is still a lot of space to improve and build a robust 

seizure detection system with a time series EEG signal achieved from the brain. The problem with 

classical methods applied, like machine learning, is that these types of problems still involve a 

highly manual feature engineering and feature extraction from raw time series data and, which 

requires strong expertise in the field and makes this approach tricky.  
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The deep learning approach has been proposed to handle these limitations, addressing the 

complex problems. I propose utilizing a powerful deep neural network structure, for timeseries 

data from a category of recurrent neural network (RNN) called Long Short-Term Memory 

networks (LSTM), to extract the temporal dependencies in EEG signals. 

 

Long Short-Term Memory networks (LSTM) provides a cutting-edge approach on 

challenging identification problems with little or no data feature engineering for time series data. 

In fact they do not need specialists to handle input features manually. The proposed model can 

learn  internal relation embedded within the time series data. Then it generalizes the relation in the 

given dataset with automated engineered features and obtain satisfactory performance. Since deep 

learning algorithms are  equipped with sophisticate backpropagation system which is enabled to 

learn and extract temporal and spatial dependencies in EEG data by using gradient descent .  

 

This dissertation also reviews different approaches that have been used by over 20 previous 

research works on epileptic seizures and identify what is the best approach for preprocessing, 

which has good performance in the algorithm and provides better accuracy results. 

1.4 Organization Of Thesis 

The reminder of the thesis is organized as follows. Chapter 2 exposes the reader to the 

background concepts regarding epilepsy and the methods used to predict seizures by a brief 

literature review and discussion of previous research. This will provide the appropriate background 

information, along with their performance results. In Chapter 3, the data used for this project is 

described then the proposed approach for robust seizure diagnosis is explained elaborately. In 
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Chapter 4, I present the experiments and analysis of our model and discuss the obtained results 

and then compare the merits from different perspectives. Finally, Chapter 5 summarizes the 

contribution of this research and suggests future directions. 
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Chapter 2 

Background Concepts 

This chapter provide required principal concepts regarding epilepsy. All previous 

approaches used to predict seizures in literature review are discussed by their merits and demerits. 

 

2.1 Epilepsy And Epileptic Seizures  

Analysis and research about seizure and epilepsy began in 1970. Epilepsy is one of the most 

common diseases, after migraine headaches in the world according to the latest WHO statistics 

[ENG12]. An epileptic seizure is characterized by the occasional and recurrent occurrence of 

seizures due to excessive and disorderly discharging of neurons from a physiological perspective. 

This abnormal discharge, arising from neurons can fire as many as 500 times a second or faster 

than normal (1–100 μV) in localized areas of the brain. This might happen only occasionally in 

some people or hundreds of times a day for others. When seizures occur, abnormalities in the form 

of rapid spiking waves appear on the EEG recording. We can categorize abnormal activities in the 

EEG signals into ictal (during an epileptic seizure) and interictal (between seizures) which is 

discussed elaborately in section 2.3. To facilitate the diagnosis and treatment of epilepsy or 

neurological disease, this research's goal is to develop methods that can identify the epileptic EEG 

signals during seizure activity and during seizure-free time. 
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2.2 EEG Signals In The Brain 

There are almost 100 billion nerve cells called neurons. All neurons have the same properties 

and hold electrical charge of brain and can transfer them as messages in long form. Neurons 

contain three components including cell body (soma), axon and dendrites as shown in Figure 2-1. 

 

 

Figure 2-1. Simple Structure of a neuron 

 

 

As Figure 2-1 shows, that the central part of the cell is the cell nucleus, and it is responsible 

for maintaining electrical charges. The long and narrow part of the neuron, axon,  links the nucleus 

to the dendrites which contain many receivers. Whenever an ion pumps out through the axon, the 

rapid change of ions cause electrical signals to pass to adjacent dendrites through the connected 
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axon. In fact, alteration of ionic charges leads to a voltage generation on the inside and outside of 

the cell membrane of the neuron. These neurons emit chemicals named neurotransmitters. 

 

As Figure 2-2 illustrates, when electrochemical activates neurons, current flows are 

generated and then contributed to the surface. For the sake of simplicity, when a neuron becomes 

excited it passes electrochemical impulses incoming from the dendrites along the axon to 

communicate with other neurons in the brain. The brain, also, can be divided into three main parts, 

the cerebrum, the cerebellum, and the brain stem (Figure 2-3). 

 

Figure 2-2. Illustration of the way how EEG electrode measures the signal through layers of 

tissue [KER19] 
 

 

Each part of brain is responsible for specific activity. Based on this definition, cerebrum is 

the biggest and the most significant part of brain because it handles emotions, motor functions, 

thoughts, and movements.  The cerebrum, itself, can be divided into four lobes on each the right 
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and left hemisphere. The lobes are identified as frontal, parietal, occipital and temporal. These 

lobes are in charge of a variety of bodily functions. For instance, the temporal lobe is responsible 

for processing auditory information and with the encoding of memory. The outer layer of the 

cerebellum is the cerebral cortex. The cerebellum is one of the few sensory areas in the brain which 

controls motor function, sensory perception, co-ordination of voluntary muscle movements, fine 

motor skills, posture, and balance regulation. Cerebral cortex plays a significant role in EEG 

recordings due to its surface position. The EEG are recordable on the scalp from the cerebral cortex 

(surface of the cerebrum) in active neurons as Figure 2-3 presents it. 

 

Figure 2-3. Different section of the brain 

 

2.3 Characteristics And Nature of EEG Signals 

Electroencephalography (EEG) is considered as a measurement for recording of the 

electricity activity of neurons in the brain and play a significant role in brain and neurological 

disorder studies and diagnosis such as brain tumor, brain damage from head injury, stroke, and 
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sleep disorders. It is also applicable to resolving diagnosis and assessment of abnormalities and 

disturbance which arise from attention disorders and learning problems. The EEG originated from 

the German term “elektrenkephalogramm”. In 1924, for the first time, German neuropsychiatrist 

named Hans Berge recorded an EEG from the human brain to demonstrate electrical currents 

engendered in the brain. 

 

Recording EEGs requires the placement of a few plates, called electrodes. Electrodes can be 

placed either along the scalp (non-invasive) or in direct contact with the brain (invasive). The 

electrodes are able to detect tiny electrical charges that result from the activity of the brain cells. 

Intracranial EEGs can be recorded through implanting electrodes in the brain during surgery. 

This method is normally considered during brain surgery on an epileptic patient to identify seizure 

location and seizure boundary. It has an advantage over scalp EEG in that it is able to seize low 

voltages of brain signal along with a whole range of brain activities precisely since specialists 

implant the electrodes on the surface of the brain to record brain activities from the cerebral cortex. 

This intracranial/invasive EEG (iEEG) does not involve skull and scalp to weaken the electrical 

brain signal anymore, therefore, it can enhance distortion and amplify signals and track the changes 

in the brain much better. Scalp EEG records electrical activities of the brain through electrodes 

which are placed with temporary glues on different locations of the surface of the scalp or the head 

of the patient. This acquired EEG recordings involve many factors which interfere with seizure 

recordings such as noise or filtering from the skull and scalp due to a large distance between 

neurons inside the skull and the electrodes. This method is a preferable measurement to record 

EEG signals than intracranial EEG or other devices like fMRI or MEG which require bulky and 

immobile equipment and cost millions of dollars. 
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The scalp EEG is the most convenient, wearable, and affordable device. Therefore, it is more 

common for epilepsy detection and treatment to use the scalp EEG. The international 10–20 

placement electrode system is defined to describe and apply the location of electrodes on scalp 

regarding the EEG exam. The International 10–20 placement electrode system was developed to 

maintain standardized testing methods in order to ensure the naming and location of electrodes is 

consistent across laboratories. 

 

In EEG measurements, we measure voltage changes resulting from ionic current within the 

brain neurons. The amplification of an EEG signal varies from 1o to 100 μV in a normal adult in 

EEG scalp recordings. 

 

Each scalp EEG electrode is connected to an amplifier (one amplifier per pair of electrodes). 

The electrical signals from the brain are converted into wavy lines on a computer screen to record 

the results. Figure 2-2 illustrate the configuration of how electrodes are placed on the scalp and 

EEG signals are recorded. Depending on the application of EEG, the number of electrodes could 

change from 1 to 256, referring to the channel which records the signal from each pair of 

electrodes. In fact, EEG signals in channels are the difference between the voltage of two 

electrodes. Figure 4 illustrates that each channel is a result of two electrodes.  

 
Figure 2-4. An EEG Channel 
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Frequency is also considered one of the significant factors for abnormality diagnosis in 

medical applications through the EEG scalp and it confirms the presence of abnormal electrical 

activity, giving information regarding the type of seizure disorder, and disclosing the location of 

the seizure focus. Signal sampling by EEG measurement is typically done by frequency. In fact, 

frequency counts the number of occurrences of repetitive activity in the unit of time with Hertz 

(Hz) which is the number of cycles in a second. The Amplitude changes from one state to another 

state like sleep and wakefulness and even from one person to another. Therefore, we can divide 

frequency from low to high into five various categorizations such as 0.5–4 Hz (delta, d), 4–8 Hz 

(theta, h), 8–13 Hz (alpha, a), 13–30 Hz (beta, b) and >30 Hz (gamma, c). For example, Delta is 

mostly found by infants and deep sleep stages of normal adults and Gamma is related to a stressed, 

happy, or aware person. The higher frequency is more likely to represent abnormalities of brain 

activities like seizure in measurement of EEG. 

 

EEG abnormalities indicate dysfunction of the brain, and it would appear in a specific state 

of the person. EEG abnormality can be split into epileptiform pattern activity and non-epileptiform 

pattern abnormalities based on frequencies and intensity of abnormality. Epileptiform indicates 

high frequency with sharp waves and spike. This EEG signal focuses on seizures. Non-

epileptiform abnormalities are shown with change in rhythmic EEG signal which are driven from 

a demonstrable structural lesion which leads to focal cerebral dysfunction. Diagnosis of these 

abnormalities with a wide range of neurological conditions of EEG signal need analysis of the 

EEGs. 

 

After amplifying, the signal is filtered. Since there are artefacts that can contaminate EEG 

data. High-pass filtering is used to remove slow artefacts like movement, while low-pass filtering 
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is also employed to remove higher frequency artefacts such as electromyographic signals. The 

most common types of artefacts that change EEG recordings could originate from the excitation 

of eyeball muscles like eye blinking or driven from bad contact between electrodes and skin. The 

frequency and amplitude of the artefact is dependable to the amplitude of the cortical signals. It is 

very likely to record electrical signals originating from other sources rather than cerebral.  

 

In the analysis of the epileptic seizure EEG recordings, different stages of an epileptic seizure 

are identified: Pre-Ictal, Interictal State, Ictal State and Post-Ictal State. They are displayed in 

Figure 2-5. Description of each stage could differentiate them from each other. 

(a) Pre-ictal State: A pre-ictal state shows up during a time period before the occurrence of a 

seizure and can last from minutes to days. Not everyone experiences something at this stage of a 

seizure. It could be visually apparent or undisguisable. However, it will reflect transformation in 

the underlying signals and could be considered as a precursor of seizures within a specific range 

of values in clinical use as a warning system. 

(b) Ictal State: The ictal state is a change in EEG signals during a seizure. During this time, 

actual physical changes will appear in the person’s body. 

(c) Interictal State: It is referred to the stage between two following seizure onsets. It is worth 

mentioning that the number of epileptogenic neurons, cortical region, and the span of seizure can 

be changed even for the same patient over time.  

(d) Post-Ictal State: This state refers to the state after the occurrence of a seizure. 
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Figure 2-5. Different brain states of an epileptic patient 
 

Seizures are the result of transient, paroxysmal, and synchronous discharges of groups of 

neurons in the brain. This desynchronization of electrical charge is apparent in electro decremental 

seizures which can be considered conversion of the preictal to the ictal state, by gradual transition 

from chaotic waveforms. However, an increased amount of spike in EEG signal would not indicate 

the severity of seizure. Mostly, the onset of seizure is characterized by abrupt changes in frequency 

of the EEG. During occurrence of the seizure. the amplitude increases and the frequency drops. 

The diagnosis of epileptiform activity and epileptic disorder requires a specific expert since it may 

vary within each epilepsy syndrome overtime. 

 

The role that EEG signals play in an accurate diagnosis of abnormalities and neurological 

disorders is becoming more and more crucial for specialists and physicians. EEG signals are used 

for diagnosis of many mental and brain neuro-degenerative diseases like, dementia, Alzheimer, 

Parkinson, migraines, neuroinfectious, sleep disorders and traumatic disorders of the nervous 

system. EEG data contains a large amount of information, requiring a computer-aided analysis 

system for accurate classification of abnormality of the EEG recording to detect brain diseases. 
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2.4 Objectives Of EEG Analysis   

An efficient classification technique helps to distinguish EEG segments to reach a better 

understanding of the cognitive processes in the decision making about a person’s health. The 

principal step is how to represent and classify the elaborated raw EEG signals for further analysis; 

for this purpose, we need to extract useful features related to the occurrence of seizure embedded 

in the raw EEG data and then classify EEG segments based on the extracted features. Usually, 

classification refers to an algorithm procedure for dedicating a given piece of input data into one 

of the given numbers of categories. The main purpose of classification is to assign class and labels 

based on the extracted features and observation of datasets into a specific problem. The 

classification algorithm that maps the input data to a category is called classifiers. With help of 

training sets, the classifier learns how to identify the class correctly and how to identify the related 

relationship between extracted features and labels correctly. This will be discussed more in 

Chapter 3. 

 

Classical approaches to these kinds of problems is through training machine learning models 

which involves the manual feature extraction from time series data. This engineering and feature 

extraction requires strong expertise in the field and will be reviewed in the next section. In fact, 

machine learning is driven from artificial intelligence and takes advantage of computational and 

statistical methods along with data and experience to improve performance on certain tasks and 

then generalize the result to build the model based on examples and experiments. 

However, development of machine learning led to the emergence of state-of-the-art 

approaches on challenging recognition tasks called deep learning. 
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The deep learning method does this task through artificial neural networks within several 

layers with increasing levels of complexity. This neural network is also equipped with an 

automated feature extraction process which is independent from human manipulation and 

knowledge that reduces the time and requisite mastery of knowledge to develop an algorithm 

significantly. This dissertation introduces a novel deep recurrent neural network architecture that 

takes advantage of deep learning and artificial neural network to improve detection of a seizure. 

The deep learning algorithms can learn from temporal and spatial dependencies in 

Electroencephalogram (EEG) data. 

 

2.5 Related Works 

Previous sections provided background material and information on EEG , epilepsy and 

epileptic seizures and introduces the objectives and contribution of this thesis. In this section, 

research and works which have been done on EEG-based detection of epileptic seizure are 

reviewed from different perspectives, including signal processing used by traditional machine 

learning methods and then the deep learning classification methods. 

 

Almost all proposed research on EEG-based detection systems commonly go through the 

same procedures to provide efficient and precise EEG classification: EEG data acquisition, EEG 

pre-processing (including different types of artifacts removal range from range muscle activities, 

eye-blinks, to white environmental noise), and EEG feature extraction and selection.  

 

EEG signals are considered the main source for detection and prediction of epilepsy through 

monitoring brain activity; but EEG signals can be easily corrupted by eye-movements, blinks, 



19 

 

cardiac signals, and muscle noise. Different filtering and noise reduction methods are used to 

lessen the impact of these various sources of noise and artifacts. Signal preprocessing refers to the 

filtering of the artifacts and it is considered a crucial procedure in processing of raw biomedical 

signals. There are a few processing methods including band-pass filter, wavelet filter, finite 

impulse response filter, and adaptive filter to clean the biomedical data [HUS19]. This processing 

also normalizes the data in order to compare it with other recordings from other subjects; 

otherwise, the vitiated data and outliers would diminish the performance of the algorithm and 

subsequently reduce accuracy of the model. 

 

2.5.1 Machine Learning Approach 

In the machine learning approach, feature extraction and selection is another mandatory step 

in assisting to make pre-ictal and interictal stages discernible. The main features in EEG signals 

could be in the time-domain, frequency domain and time-frequency domain. 

Figure 2-6 briefly overviews the general procedures in machine learning techniques that 

have been used to solve the problem of epileptic seizure detection. 

 

Figure 2-6. Process classification of Epilepsy by using EEG data 

 

Time-domain methods calculate the correlation between statistical parameters and 

Electroencephalographic (EEG). In fact, it links physical time interpretation and conventional 
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spectral analysis. Linear Prediction (LP), Component Analysis Principal component analysis 

(PCA), linear discriminant analysis (LDA), and independent component analysis (ICA) are the 

main methods for time domain EEG analysis. The Linear Prediction estimate value is based on a 

linear combination of the past output value with the present and past input value. PCA is developed 

to transform the high-dimensional data (in case of epilepsy high dimensional feature vectors) to a 

low-dimensional data. The independent component analysis (ICA) decomposes high-dimensional 

data into statistically linear independent components while LDA is used for dimension reduction 

of feature sets by finding linear combinations of feature vectors. 

 

Gutman [GOT79] is considered as one of first founders of seizure diagnosis based on EEG 

signals. He considered time-domain analysis and then deployed 60 Hz as a digital filter to remove 

artefact from both EEG and iEEG signals to distinguish the normal and epileptic patterns recorded 

from 20 epileptic patients. The study [SHA16] on the CHB-MIT EEG dataset examined extracted 

features based on the mean and minimum values of EEG signal energy in successive one second 

EEG epochs. Then, by using a linear classifier, accuracy of 99.81% was achieved in classification 

tasks. 

 

The nonlinearity and chaotic nature of EEG signals led the researchers to propose using 

nonlinear-based techniques. This method adds more complexity to the interpretation of EEG 

signals.  To carry out nonlinear EEG analysis, many useful nonlinear parameters such as Lyapunov 

Exponent, Correlation Dimension, and entropies like Approximate Entropy and Sample Entropy 

have been proposed. In the study done by Acharya et al [ARC12b], they utilized EEG-based 

features including approximate entropy, sample entropy, and phase entropy to demonstrate 
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different features of EEG signals and then built a Fuzzy Sugeno Classifier (FSC) and obtained 

seizure detection accuracy of 99.40%. Kollialil et al. [ELD13] also exploited entropy features in 

EEG signal energy as an attribute to EEG activities with the support vector machine (SVM) 

classifier to reach classification accuracy of 99.66%. In a study, conducted by Dash et al., they 

utilized the traditional entropy features in least square SVM (LSSVM) classifier to achieve an 

accuracy of 82.22% [DAS20]. 

 

In [ANT12], Dalton et al. used the same long-term EEG recordings of CHB-MIT database 

and examined different time domain features of EEG signals, including the mean, standard 

deviation, zero-crossing rate, entropy, and root means square (RMS) to detect seizure. They found 

the RMS was the most impressive feature that can be used to identify seizure from non-seizure 

activities. Results showed an average sensitivity and specificity of 91% and 84% for seizure 

classification. 

 

In brief, time domain-based feature of EEG signals are widely used in real-time detection 

of epileptic seizures since they are computationally simple and sensitive to different artefact and 

intra patient variants. The frequency features of EEG signals could provide clearer perception and 

more descriptive information than time domain features. Various techniques have been used to 

extract features based on frequency of EEG signal to detect seizure from non-seizure. 

 

During occurrences of epileptic seizure, sudden change in the frequency of EEG signals 

happen which can be assessed by using frequency-domain methods. Fourier transform (FT), 

moving average (MA), auto-regression (AR), and auto-regressive moving average (ARMA) are 
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commonly used frequency-domain methods. In [HEB13], the authors also developed a single 

channel and patient-specific EEG-based seizure detection method with the help of Discrete Fourier 

transforms in a single channel and then Frequency-moment improved sensitivity of automated 

seizure detection to 91% and a false positive rate of 0.02per hour. 

 

Frequency-domain approaches obtain acceptable result to detect seizure from non-seizure 

automatically for long term EEG signals on a large scale. However, they have their own constraints 

with identifying precise frequencies at a particular time instance Besides, time-based features are 

needed for visual interpretation of EEG recordings. Therefore, the researchers attempt to combine 

both time and frequency domain attributes of EEG signals to achieve more robust and reliable 

detection to overcome these constraints and obtain multi-resolution to decompose sub-band signals 

by feeding the EEG signal through filter banks [HUS19]. 

 

Short-time Fourier transform (STFT) and wavelet transform are powerful time frequency 

tools to extract discernible features from chaotic nature of signals like brain signals. The wavelet 

transform performs better in terms of frequency resolution compared to the short-time Fourier 

transform when the signal is changing in time. The wavelet transform can determine where and in 

what scale frequency changes occur by decomposing the signal into sub-bands and extracting 

features from these sub-bands. However, finding the optimal mother wavelet with the number of 

decomposition levels to extract distinguishable features of seizure through EEG activities is 

challenging. 
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Nilchi et al. [NIL10] in their research, took advantage of features from both time domain 

and frequency domain and then fetched into an MLP to categorize the EEG signal into normal 

(healthy), seizure-free interval (inter-ictal), and seizure interval (ictal). Their research obtained 

accuracy  of 97.5% with  of 0.095% for the variance. Ayoubian et al. [AYO13] used other features 

including the relative energy, number of peaks and wavelet entropy to improve accuracy of seizure 

detection by a sensitivity of 72% and a false detection rate of 0.7 per hour. The sample entropy 

was also used in [SON10] as a representative EEG feature to detect epileptic seizures. The features 

were fed into the extreme learning machine (ELM) and led to sensitivity, specificity, and 

classification accuracy of 97.26%, 98.77%, and 95.67%, respectively. 

 

 Furthermore, the researchers of [LIU12] proposed wavelet-based seizure detection method 

on a large dataset of 509 hours from 21 epileptic patients. The EEG data were first analyzed using 

wavelet transform to extract the effective features and classified and tested by using a SVM 

classifier. This method achieved a sensitivity of 94.46% and a specificity of 95.26% with a false 

detection rate of 0.58 per hour. 

 

Polat et al.[POL07] proposed an innovative seizure detection method using both wavelet 

and Hilbert transforms. Mean, maximum, minimum, standard deviation, and average power were 

also extracted. They demonstrated that the features extracted from the Hilbert transform 

coefficients along with K-nearest neighbor (KNN) classifier achieved an average sensitivity and 

specificity of 100% for both. This is a superior seizure detection rate compared to the result 

obtained from wavelet coefficients.  
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In [NIK12], Niknazar et al. used the Daubechies 4 mother wavelet (Db4) to decompose the 

EEG recordings into five levels: the alpha, beta, delta, theta, and gamma EEG rhythms. Then, by 

exploiting a subset of statistical features and by using an error-correcting output coding (ECOG) 

classifier; they achieved an accuracy of 98.67%. 

 

The research [PAN10] done by Panda et al. features were extracted through five-level 

wavelet decomposition and then fed into SVM classifier. They determined that energy values were 

the remarkable features that could achieve the highest seizure detection accuracy with 91.20%. In 

other research [UZZ12], the authors used different features including relative energy and 

normalized coefficient of variation (NCOV). Results attained were 83.60% accuracy, 100% 

sensitivity, 91.80% specificity, and 86.70% precision. 

 

Another time-frequency analysis tool that is commonly used for seizure occurrence 

detection is the Empirical Mode Decomposition (EMD). Compared to short time Fourier and 

wavelet transforms, EMD does not require any prior fixed basis for analyzing chaotic time-series 

signals like EEG signals [HUA98]. EMD is a nonlinear signal decomposition algorithm which 

transforms time-series signals into a set of components called “intrinsic mode functions (IMFs)” 

keeping the features of the original signals. IMFs compromise statistical features though. 

Therefore, IMFs are used by numerous seizure detection methods to distinguish seizure and non-

seizure EEG activities. Eftekhar et al. [EFT08] take advantage of applying EMD to both EEG and 

ECG signals in order to detect seizure. Their results were comparable to those of the existing time-

frequency methods. It proved that EMD with a sufficient number of decomposition levels could 

surpass all previous wavelet-based methods regarding seizure detection accuracy and reliability. 



25 

 

Tafreshi et al. [TAF08] also used EEG IMFs to define delegate features for recognition of seizure 

patterns. Then MLP classifier tested efficiency of this approach on a Freiburg EEG dataset with 

90.69% classification accuracy. 

 

To recapitulate, of all proposed models of machine learning, SVMs [HUS18] are the most 

commonly and successfully used classifier in machine learning to distinguish seizure from non-

seizure and more investigations are required to optimize the performance of the time-frequency 

analysis tool for efficient and robust detection of epileptic seizures. It is worth mentioning that all 

the existing ML methods are hand-crafted feature extraction techniques which are implemented in 

specific domains. These domain-based methods also have their own challenges such as interpatient 

and intra-patient variabilities of seizure. Since EEG data is non-stationary and its statistical 

features regarding occurrence of seizure are different from one patient to the next patient. 

Furthermore, their vulnerability against different artifacts change over time for the same patient, 

which can leave a negative effect on the performance of seizure detection systems.  

 

2.5.2 Deep Learning Approach   

Deep learning is a subset of machine learning, having similar functionality but proposed to 

handle the limitations and iron out the problems of machine learning. It can figure out patterns 

more precisely from large scales of data by processing and feeding the information into a multi-

layer hierarchical network via the input units. It simulates the neural jobs that exist in the human. 

In fact, they constitute a network of algorithms called artificial neural networks. The artificial 

neural network model is comprised of multiple layers and each layer consists of nonlinear modules 

that work collaboratively to process raw data and reach a desired result. These multiple layers 
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extract significant features and examine or analyze them for the output result. Generally higher 

layers amplify features of the input that are significant to discriminate major variations from minor 

ones. Due to its high performance, the number of applications built on DL techniques has increased 

significantly. 

 

Convolutional neural network (CNN) and recurrent neural network (RNN) are the most 

used algorithms for epileptic seizure prediction. Both take advantage of the connectivity pattern of 

neurons existing in the brain. The convolution function of a CNN is just like a filter with weights 

for extracting the features from multi-dimensional input data. While the RNNs are concentrated to 

find logical sequences in the input series of data. The output of each hidden layer passed to the 

next layer and is also fed back to itself. In fact, the present output is a result of a current moment 

and history. What makes RNNs architecture different from CNN is that RNN considers both 

current input and previous input due to memory logic inside the RNN algorithm while CNNs only 

consider the current input. RNNs are the better choice for time series data like EEG signals while 

CNN could be a good choice for data with multiple dimensions, like image classification. 

 

The building of a machine learning model for seizure detection requires optimized feature 

vectors obtained from traditional signal processing methods to train the classifier and achieve the 

highest accuracy. It not only requires expert feature extraction but also takes a lot of time to handle 

the presence of noise and artifacts in data which makes the procedure more complex and time 

consuming.  
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While deep learning algorithms automatically learn features through different layers and 

provide encouraging result in ES prediction, features learned through DL models are more 

distinguishing and stable than hand-crafted features [GEO20]. 

 

In [SAM18], a convolutional neural network model was proposed for both feature 

extraction and classification to separate preictal segments from interictal ones. This approach 

obtained sensitivity of 81.4%. 

 

Isabell et al. [ISA18] used Intracranial Electroencephalography (iEEG) data from ten 

patients. First, they trained a deep learning classifier to distinguish between preictal and interictal 

signals. After testing the classifier, the prediction system was tuned to prioritize sensitivity. The 

proposed system achieved mean sensitivity of 69% and mean time in warning of 27%.  In this 

work, they reported mean performance which is averaged three independent runs. 

 

Ramy Hussain et al. [HUS19] analyzed human iEEG data and proposed a pre-processing 

method for reducing the data size and converting the time-series iEEG data into an image-like 

format to be used as inputs to convolutional neural networks (CNNs). They then implemented a 

seizure prediction algorithm with cooperative multi-scale CNNs for automatic feature learning of 

iEEG data. They achieved an 87.85% sensitivity and 0.84 AUC (Area Under the Curve) on average 

as a performance measure of the prediction algorithm. In fact, AUC is used as the measure to assess 

the ability of a classifier to distinguish between classes. The higher the AUC, the better the 

performance of the model at distinguishing between the positive and negative classes. For 
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example,  AUC = 100%, then the classifier is able to perfectly distinguish between all the Positive 

and the Negative class points correctly. 

 

Tsiouris et al. [TSI18] proposed a long short-term memory (LSTM) for the prediction of 

an epileptic seizure. They analyzed the performance of different architectures of LSTM for random 

input segment sizes ranging from 15 min to 2 h. They compared the performance of three 

architectures of LSTM by feature vectors of EEG segments as input to LSTM, where the feature 

vector consists of various features from the time domain, frequency domain, and local and global 

measures from graph theory. The best performance of their experiment achieved 99.28% 

sensitivity for a 15-minute pre-ictal period, 99.35% sensitivity for a 30-minute pre-ictal period, 

99.63% sensitivity with a 60-minute pre-ictal period, and 99.84% sensitivity with a 120-minute 

pre-ictal period. However, feature engineering needed for these results was very complex. 

 

2.5.3 EEG Feature Classification  

The primary goal of this research is to focus on accurate identification of patient status, if 

patients experience seizure or not, and then make caregivers aware, take appropriate action and 

medication on time and help patients. Previous works on seizure detection can be categorized as a 

binary classification (normal vs. ictal) problem and ternary class (normal vs. interictal vs. ictal) 

problem. 

 

We can also look at the published work related to EEG-based epileptic seizure detection 

from a classification perspective and used datasets. Based on the University of Bon’s dataset, most 

of the studies on diagnosis of seizure are binary classification systems (normal vs. ictal). 
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Classifications are built on patterns of EEG signal taken from epileptic patients during 

experiencing active seizures (set E) and the normal EEG signals taken from healthy subjects (set 

A) or any other normal and non-seizure brain activities class like sets B, C and D.  

 

The research, done by Nikolaou et al. [NIC12] focused on entropy-based features for 

classification of A-E cases and ABCD-E. The accuracy of 93.55% and 86.1% were respectively 

attained. The authors in [ULL16] considered an A-E class combination and then applied pyramidal 

one-dimensional convolution neural network (P-1D-CNN) to achieve an accuracy of 100% as a 

result. 

 

In [SHO09], the (SVM) classifier was used to discriminate between seizure and non-

seizure. They developed models with two post-processing steps to enhance the temporal precision 

and the robustness of the system on a large clinical data set of 267 hours of EEG data from 17 full-

term newborns with seizures. They achieved an average detection rate of ~89% with one false 

seizure detection per hour. Gandhi et al., [GAN11] applied a probabilistic neural network (PNN) 

in combination with SVM on class combination of ABCD-E to achieved accuracy of 95.44%. 

 

EEG cross-correlation coefficients [SUR09] were used to extract three statistical features 

which the authors fed into the support vector machine (SVM). They yielded an average accuracy 

of 95.96% to identify seizure. Similar research was completed by Nicoletta et al. [NIC12]. They 

used entropy to extract feature from EEG signals then applied SVM to distinguish healthy and ictal 

EEG epochs with an accuracy of 93.80% for binary classification. 
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Three-class EEG classification is another seizure detection problem type which separates 

normal EEGs taken from healthy subjects, Inter-ictal EEGs taken from epileptic patients 

throughout seizure-free intervals, and Ictal EEGs recorded from epileptic patients while 

experiencing active seizures. This kind of classification (ternary classification) problem is more 

sophisticated compared to previous (binary) classification problem. This type of classification 

considers the EEG recordings from C and D sets as separate third of class - Inter-ictal- to identify 

alternation of EEG patterns to predict occurrence of seizure. This classification problem is also 

involved in topology of seizure occurrence in the brain, which could be significant in terms of 

automated seizure detection.  

 

Numerous research and different methods have been used in this category of seizure 

detection problems. Next, I list a few recent research works done on the same dataset which I used 

for this research as it relates to my approach for classification. 

 

Acharya et al. [ARC12a] studied the normal, interictal, and ictal activities in EEGs. They 

decomposed the dataset from Bonn University into wavelet coefficients by applying Wavelet 

Packet Decomposition (WPD) and used eigen values from the resultant wavelet coefficients using 

Principal Component Analysis (PCA). By testing different supervised classifiers, they obtained 

99% classification accuracy using the Gaussian Mixture Model (GMM) classifier. 

 

Other work [RAJ12] developed a model for the automatic detection of normal, pre-ictal, 

and ictal conditions. Entropy features like Approximate Entropy (ApEn), Sample Entropy 

(SampEn), Phase Entropy 1 (S1), and Phase Entropy 2 (S2) were extracted then fed into different 
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classifiers including Fuzzy Sugeno Classifier (FSC), Support Vector Machine (SVM), K-Nearest 

Neighbour (KNN), Probabilistic Neural Network (PNN), Decision Tree (DT), Gaussian Mixture 

Model (GMM), and Naive Bayes Classifier (NBC). They achieved highest accuracy of 98.1% by 

Fuzzy classifier. 

 

N. Ilakiyaselvan et al. in [ILA2020] used reconstructed phase space (RPS) representation 

of the signal to deal with seizure detection as a binary classification (normal vs. ictal) problem and 

ternary class (normal vs. interictal vs. ictal) problem. While the university of Bonn dataset contains 

4097 samples, they used segments of 510 samples to build their models. Their classification 

accuracy of the model for the binary classes was (98.5±1.5) % and (95±2) % for the ternary classes. 

 

Similar research was done by Ubeyli who achieved an accuracy of 99.30% classification. 

They implemented multiclass support vector machine (SVM) and trained on the extracted features 

through eigenvector methods [ELF20].  In addition, Ramy Hussain et al., also develop a 

ConvLSTM Network to achieve 100% classification accuracy and 100% specificity for three-class 

EEG classification problems by using segments of 2048 samples from the University of Bonn 

dataset to build their models [HUS19]. 
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Chapter 3 

Data and Methods  

This chapter discusses the empirical dataset that has been used for this study. It then describes 

the methodology which is proposed to detect the occurrence of seizures. 

3.1 Computer-aided analysis system   

The role that the EEG signals play in an accurate diagnosis of abnormalities and 

neurological disorders is becoming more and more crucial for specialists and physicians. While 

EEG signals are used for diagnosis of many mental and brain neuro-degenerative diseases such 

as dementia, Alzheimer, Parkinson’s, migraine, sleep disorders and traumatic disorders of the 

nervous system (e.g., brain trauma, autism, etc.), the main application of EEG signal is for 

epilepsy. Since EEG data contains a large amount of information which varies from patient to 

patient, its analysis is time consuming.  A computer-aided analysis system not only facilitates 

diagnosis expediently, it also makes the procedure an automatic neurophysiological assessment 

for accurate detection of abnormalities from EEG signals.

 

Figure 3-1.The procedure of automated seizure detection (ASD) 
 

This thesis postulates a computer-aided analysis system that automate EEG-based seizure 

diagnosis as depicted in Figures 3-1. It demonstrates the required stages of diagnosis. At the 
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beginning, the acquisition of the EEG signal from the patient is done by a clinician. Then the pre-

processing stage is required. It includes removing noise that will diminish the complexity and 

computation time of algorithms and enhance the functioning of the classifier and the efficiency of 

feature extraction as biomarkers of disease identification. Then depending on the classification 

algorithm, specific feature extraction is required. After building the model based on the extracted 

features, the system can recognize the pattern of occurring seizure as seizure biomarkers. As a 

result, a fast and efficient treatment can be used for epileptic patients. 

 

3.2 Dataset 

The seizure detection experiments done in this dissertation is based on the benchmark 

clinical EEG dataset provided by Bonn University, Department of Epileptology, Germany, 

[AND01]. This is an open-source and widely used epileptic EEG dataset for epileptic seizure 

detection research.  

 

It consists of EEG data from five different sets denoted as A, B, C, D, and E. Each set 

includes 100 single-channel EEG recoding signals recorded from a single subject separately for 

23.6 seconds by using the standard 10-20 placement system for EEG electrode placement 

[AND01] for data acquisition. 

 

Sets A and B contain normal EEG signals recorded from five healthy subjects who were 

awake and relaxed. Set A recorded EEG signals of the brain from the subjects whose eyes were 

open and Set B recorded signals when the patients’ eyes were closed. Sets C, D and E were taken 

from five epileptic patients. EEG signals in set C are related to seizure-free intervals and recorded 
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with electrodes placed in the brain epileptogenic zone, while set D signals are recorded from the 

hippocampal formation of the opposite hemisphere of the brain in seizure-free period. Set E 

captured EEG signals from five epileptic patients while experiencing active seizures. Sample EEG 

signals of five EEG classes are shown in Figure 3-2. 

 

Figure 3-2. Sample EEG signals of five EEG classes 

 

The detailed dataset is shown in Appendix A, Table 1. 

 

3.2.1 Raw Data Preprocessing  

Each EEG signals provided by the Bonn Dataset had been sampled at a rate of 173.6 Hz 

and then digitized by using a 12-bit analog-to-digital converter. All EEG used the same 128-

channel amplifier system that fed into a band-pass filter with cut-off frequencies of 0.53Hz and 

40Hz to remove artefacts from the EEG data. Datasets under this study encompass 500 EEG 

signals and each one is the recording of electrical activities of subjects for 23.6 second and the 

total number of data points in each EEG signal, d, is equal to 4096. 
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Each recording data includes 4096 data points, which I divide into segments of different 

length of datapoints from 1 to 4096, to not only  generate many instances from one record but also 

to find the efficient length of recording to attain the highest accuracy in seizure classification. 

These segments form the basis for all further processing. 

 

The EEG segmentation, particularly in this study, could resolve the need for a large number 

of labeled data samples to build a valid model. It is quite challenging to obtain sufficient well-

labeled data for training deep neural networks in real-life applications, particularly for cases like 

seizures. Data segmentation aids deep neural networks to access more training samples while it 

also improves the performance of the deep learning network in the experiments. Moreover, 

segmentation facilitates the process of finding the dependencies between consecutive EEG data-

points in each EEG channel signal. Since EEG recordings are non-stationary signals which don’t 

have any stable statistical features over time. The EEG segmentation slides a signal recording into 

several segments with common temporal and spectral features. The different size of segmentation 

in this study experiments demonstrate which length is the most optimal length to capture the 

features efficiently. 

 

3.3 EEG Classification 

An efficient classification technique helps to distinguish EEG segments and reach a greater 

understanding of cognitive processes in the decision making of a person’s health. The main step 

is to determine how to represent and classify the elaborated raw EEG signals for further analysis. 

For this purpose, the optimal segmentation is required to extract useful features from raw EEG 

data and then do the classification based on the extracted features. Usually, classification refers to 
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an algorithm procedure for dedicating a given piece of input data into one of the given numbers of 

categories. The main purpose of classification is to assign class or labels to observation of the 

dataset based on the found and extracted features and in a specific problem. 

 

The classification algorithm (classifier) maps input data to a category with help of training 

sets. The classifier learns how to identify the class correctly. This study focusses on analysis of 

EEG signal recordings. Measuring brain signals through EEG recording allows us to obtain 

collection of relevant properties of the brain signals from a large amount of data. In the 

classification realm, there are also two types of classification: supervised classification and 

unsupervised classification. In supervised classification, observations or set of data are labeled to 

relating class labels. In unsupervised classification, observations are not labelled or assigned to a 

known class. 

 

Supervised classification is the most common approach in biomedical research, and this is 

the approach that has been used in this study. Supervised classification is done on a set of training 

dataset, consisting of a set of instances, which have been labelled with the correct output. 

 

There are pairs of samples in the given training dataset that can be expressed as D = {(𝑥1, 

𝑦1), (𝑥2, 𝑦2),…, (𝑥𝑛, 𝑦𝑛)}. 𝑥1, 𝑥2, …, 𝑥𝑛are the observations and 𝑦1, 𝑦2,…, 𝑦𝑛 are the class labels 

of the observations. The aim of classification is to find the accurate transformation between the 

feature space X and the class label space Y, i.e. f: X → Y. The class space has a finite number of 

elements, i.e. y ∈ {1, 2,…, K}. For example, in the binary classification, there are two classes that 
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refers to the target and non-target classes. These classes are shown as Y = {0, +1}. For ternary 

classification, there are three classes, they are shown as Y = {0, +1 ,+2}.  

 

3.4 Artificial Neural Networks Approach 

Artificial Neural Networks (ANNs) are a learning-based algorithm, inspired by the anatomy 

of the brain and its learning procedures. Figure 3-3 depicts the similarities between the real (left) 

and the artificial (right) neurons. The artificial neuron constitutes a basic computational unit. The 

real, or biological, neuron gets information from axon terminals through dendrites from several 

other neurons. After processing, the neuron will pass the output through its axon terminals into 

other neurons. In fact, the structure of a synapse permits a signal to be passed between neurons. In 

the artificial neural model, the data received from other neurons are called the inputs (e.g. x) and 

the synapses are considered with the weights in ANNs (e.g. w). All the information received by 

one neuron can then be considered into one value by using equation 3-1. 

𝑛 = ∑ (𝑤𝑡𝑥 + 𝑏)𝑡         Equation 3-1 
 

b is a constant and intrinsic to each neuron, called bias.  Then the value of n is then the 

argument of the below function in Equation 3-2. 

 a = f(n)                 Equation 3-2 
 

To produce a, the output of the neuron. The function f is also intrinsic to each neuron, 

called the activation function. and it can take many forms. Sigmoid , relu and Softmax are some 

of the widely used activation functions. 
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Figure 3-3. Biological neuron(left), Artificial neuron(right) [SEP97] 

 

3.4.1 Deep Neural Networks 

Deep learning Models use artificial neural networks (ANNs) that derive from perceptron’s 

model inspired by the brain and its processes. As discussed in Section 2.5.2, there are several types 

of ANNs, from which CNNs and RNNs, can be highlighted. All of them have some common 

principles. 

 

Neurons can be stacked to form one layer of neurons in the neural network and the deep 

neural network embraces multiple layers of neurons. The most principal architecture of neural 

networks follows the architecture shown in Figure 3-4. 

 

Figure 3-4. Architecture of neural network 
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In every ANNs, there is an input layer (blue), the middle layers (green) are called the 

hidden layers and the last layer (red) is the output layer that produces the final output of the 

network. An array p ∈ 𝑅𝑑 is considered as an input, where d is the number of inputs (features). 

Formally, each layer j can be described by the following parameters. 

• 𝑤𝑗 ∈ 𝑅𝑠∗𝑟, where s is the number of neurons of the present layer and r is the number of 

neurons of the previous layer. 

• W is the weight related to each neuron in each row. 

• 𝑏𝑗 ∈ 𝑅𝑠contains the bias  

• 𝑓𝑗  is the activation function. 

Equation at layer j is: 

𝑎𝑗 = 𝑓𝑗(∑(𝑤𝑗−1𝑝 + 𝑏𝑗 ) = 𝑓𝑗(𝑛𝑗)       , if j =1                   Equation 3-3 
 

𝑎𝑗 = 𝑓𝑗(∑(𝑤𝑗−1𝑎𝑗−1 + 𝑏𝑗) = 𝑓𝑗(𝑛𝑗)  , if j >1                   Equation 3-4 

  

Artificial Neural networks can be used for both regression and classification problems. In 

order to adjust the neural networks for classification problems, the number of neurons of the output 

layers has to be equal to the number of classes in the defined problem, therefore, each class is 

coordinated to one output neuron. In this study the adjustment has been set for binary and ternary 

classification. We can build classifiers by analyzing the outputs of the algorithm for a single pattern 

and values of outputs. The value of each output is significantly dependent on the activation 

function. In this dissertation, the SoftMax is proposed to be used. The value of an output neuron 

is the probability of a given pattern belonging to the class associated with it, this is why different 

activation functions are usually used in the context of classification such as sigmoid and Softmax 

.The Softmax function is shown by the equation of 3.5 



40 

 

𝜎(𝑛)𝑗 =
𝑒
𝑛𝑗

𝛴𝑗=1
𝑘 ⅇ𝑛𝑘

              Equation 3-5 

 

• For j=1,…,k  and  𝑛 = (𝑧1, … , 𝑧𝑘) ∈ 𝑅
𝑘 

• The Softmax function takes as input a vector z of K real numbers and normalizes it into a 

probability distribution consisting of K probabilities proportional to the exponentials of the 

input numbers. After applying Softmax, each component will be in the interval [0,1], and 

the components will add up to 1, so that they are considered as probabilities.  

• Where 𝜎(𝑛)𝑗 is the probability of a pattern assigned to the class related with output neuron 

j, and K is the number of output neurons (classes). 

• Softmax function 𝜎 = 𝑅𝑘 → [0,1]𝑘 

• it applies the standard exponential function(𝑒𝑛𝑗) to each element 𝑛𝑗of the input vector n 

and normalizes these values by dividing by the sum of all these exponentials; this 

normalization ensures that the sum of the components of the output vector is 1 

 

3.4.2 Recurrent Neural Networks 

Humans do not start their thinking and reasoning from scratch. It is usually based on 

previous experience and understanding. The whole concept behind deep learning is to try and 

mimic the human brain and to achieve a similar kind of function as the human brain by using 

different implementations of ANN and CNN. The main advantage of Neural Network is that the 

Neural Network (NN) with neurons connecting to themselves through time can learn from prior 

experience through epochs in extremely valuable and optimal way. 
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Although the results obtained in seizure detection by using such artificial neural methods 

have been promising, there is still some space for improvements. CNN-base models are looking 

for and learning the same pattern over the EEG signals obtained from different patients. However, 

the signature of the epileptic seizure varies across different patients and even for the same patient 

over time. A solution might be proposed to capture these features.  But traditional neural network 

cannot satisfy this requirement, especially if we consider the recording of EEG signals for seizure 

detection. Because in order to understand what is going on currently, we need to know what 

happened at a previous point in the EEG recording, then decide and predict what is happening next 

at that point in the EEG recording. Based on the variation of EEG signal during time, we would 

be able to train our model and then predict if the seizure would happen or not. Recurrent neural 

network smooths this issue and enables the information flow to persist through networks by loops. 

 

Recurrent Neural Networks (RNNs) are a subclass of Artificial Neural Networks with 

embedded loops in their architecture, as shown in Figure 3-5. This is the main reason that makes 

this algorithm suitable for sequential data, like the time series. The inner loops are able to pass 

information from one pattern to another pattern to learn temporal dependencies. The original 

version of RNN is called vanilla and is depicted with Equations 3-6 and 3-7. This network takes 

advantage of state h at each timestep t, and is a function of the current inputs  𝑥𝑡,  the state from 

previous time step, ℎ𝑡−1, along with weight matrices w and U. The algorithm can compute the 

output at any given time step with Equations 3-6 and 3-7. 

ℎ𝑡 = 𝑓(𝑤ℎ𝑡−1 + 𝑈𝑥𝑡)              Equation 3-6 

 

𝑎𝑡 = 𝑓(𝑉ℎ𝑡)                            Equation 3-7 
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V is the weight matrix associated with the state h when computing the output. As seen in Equation 

3-7. 

 

The unrolled RNN in time looks like an ANN with many layers, while weights are shared 

across layers for the RNNs. In other words, recurrent neural network is not much different from 

normal neural network.  It multiplies the same network, each network passing a message to their 

successor network. RNNs are cyclic directed graphs like that of Figure 3-5 which considers the 

present input and also past output to make decisions. 

 

Figure 3-5. Architecture of a Recurrent Neural Network it shows a module is repeated and 

applied to the past outputs and present inputs 

 

Past information is held in the network’s hidden state (ℎ𝑡−1), obtained by Equation 3-8 

ℎ𝑡 = 𝑓(𝑤ℎ𝑡−1 + 𝑈𝑥𝑡)                Equation 3-8 

 

Thus, ℎ𝑡 is a function of the current input, 𝑥𝑡, and of the previous hidden state, ℎ𝑡−1, 

multiplied by weight matrices (w and U).  The weight matrices determine how important the 

present and past states are, and they are applied to minimize the error by using an algorithm called 

Back Propagation Through Time (BPTT). BPTT is the application of the backpropagation training 

and supervised learning algorithm to recurrent neural network applied to sequence data like a time 

series. The general procedure of algorithm works on unrolling all input timesteps. In each time, a 

sequence of timesteps of input, one copy of the network, and one output are presented. Then, errors 



43 

 

are calculated and accumulated for each time, The network is rolled back up and update the 

weights. 

 

The mapping function, 𝑓, can be considered the logistic function, control gradients by 

BPTT. Since it calculates the errors for each time step, accumulating them. The update of the 

weights is done at the end, given w and U throughout the network. This process is repeated until 

the error is minimized. BPTT becomes slow when  input sequences are comprised of thousands of 

timesteps, due to the hidden unit per time step and the same number of updates for each weight 

update. Sometimes, a high number of time steps is necessary for longer persistence in memory, 

and it may make the network very computationally expensive which is problematic which can lead 

the weights to vanish or explode, and make a slow learning and the model inefficient. 

 

3.4.3 Vanishing Gradient Problem  

In each timestep, the error is back propagated across all previous layers until the first layer.  

The act of back propagating from layer to layer refer to the multiplication of the derivatives of the 

activation functions of each layer. If we consider the sigmoid function as one common activation 

function, given by Equation 3-9. 

σ(x) = 
1

1+𝑒−𝑥
            Equation 3-9 

 

The maximum value of the derivate of the sigmoid function occurs at 0.25, F′(net) = 

0.25.  Since the weights become updated by contribution of the weights located n time steps behind 

is proportional to (
𝑑𝜎

𝑑𝑥
)
𝑛

 with the assumption that the sigmoid function is used in each layer and 
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max(
𝑑𝜎

𝑑𝑥
)= 0.25, we can conclude that the contribution from previous layers to update weights 

approaches zero as we go deeper in the neural network. 

 

The derivative feature of this function in the process of updating weights in order to 

decrease error leads the output we expect from each cell to be different from what is achieved from 

the algorithm. Because every time the error and weight of neurons are multiplied and updated by 

this value, the resulting gradient will become smaller value every time. Therefore, the result of the 

update diverges from the actual result. This is called the Vanishing Gradient Problem [HOR98]. 

 

3.4.4 Long Short-Term Memory (LSTM) 

As earlier discussed, the advantage of RRNs over other neural networks is that they can 

connect previous information to predict what is going on at a current point. This is done by learning 

or training neurons from reading and learning from previous data in the time series data. 

Traditional RRNs lead to a gap, between the needed information and the current task, which may 

grow, therefore RNNs become inefficient. Since the RNN is designed in a way that consider long 

term dependencies, we need more intelligent algorithm similar to human reasoning. If we aim to 

simulate neural networks to the human brain, it needs to take advantage of intelligence can pick 

appropriate parameters and relevant information for reasoning and addressing the problems 

carefully. In other words, some level of intelligence is needed to identify how much old 

information is needed to predict the current task.    

 

Particular to times series data, the algorithm receives large amount of information as 

sequence of timesteps; but not all information may play a critical role in improving the efficiency 
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of the algorithm in consecutive epochs. Therefore, by removing some part of the data from 

previous epochs the neurons would get valid and enough required information to learn. RRN 

cannot remove impractical data from data automatically. It just tries to adjust a small weight for 

them to diminish their contribution in building the model. Thus, neurons cannot adjust their 

contribution in the output result correctly. This method is computationally costly and might 

diminish the efficiency of the algorithm for learning. However, a solution to this problem is the 

Long Short-Term Memory (LSTM) architecture. 

 

LSTM is an architecture with different cells that have the ability to remove or add 

information from previous cells to the current cell and adjust their contributions in the calculation 

for the result. 

 

Sepp Hochreiter and J¨urgen Schmidhuber [SEP97] proposed an innovative and different 

RNN architecture capable of learning long-term dependencies to overcome the above mentioned 

problems. Figures 3-6 and 3-7 show the difference between traditional RNN and LSTM 

architectures. Figure 3.6 depicts traditional RNNs. As illustrated, the state ℎ𝑡is a function of the 

previous state, ℎ𝑡−1, and the current inputs like 𝑥𝑡. 

 

The architecture of the Long Short-Term Memory (LSTM) is shown in Figure 3-6.  The 

LSTM network is a modified version of RNN to avoid the long-term dependency. Similar to the 

recurrent neural network, the LSTM network is built based on the repetition of a chain of modules.  

LSTMs exploit more sophisticated modules through the same repetitive structure. 
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LSTM’s architecture, with different cells, has the ability to remove or add information from 

previous cells to the current cell. Each LSTM unit has four layers: a memory cell, an input gate, 

an output gate and a forget gate, displayed in Figure 3-6, and listed by Equations 3-10 to 3-15. 

 

The main difference between LSTM and RNN is that instead of just one type of state ℎ𝑡 

passing information from one timestep to another, now there is another type of state named the 

cell state Ct. The cell state allows information to just flow along without changes, acting like a 

conveyor belt, if needed. It is also equipped with different gates which enable the neurons to decide 

how to use the data coming from previous neurons or just ignore them and even how much of that 

information is needed to be kept for improving efficiency of the algorithm. In this way, information 

can be removed or added to the cell state by means of structures called gates. 

 

The LSTMs are represented mathematically, by Equations 3-10 to 3-15, which are 

explained below. The operator ◦ represents point-wise multiplication. 

Regarding the computation of the cell state, there are two equations. The first one is responsible 

for removing information from the cell state, and the second one is responsible for adding 

information. 

  

 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)              // forget gate              Equation 3-10 

 

 𝑖𝑡 = 𝜎(𝑤𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                      // input gate           Equation 3-11 
 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑐)         // output gate             Equation 3-12 

 

𝐶𝑡 = 𝑓𝑡  ◦  𝐶𝑡−1 + 𝑖𝑡   ◦  𝐶̃𝑡                     // cell                    Equation 3-13 
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𝑂𝑡 = 𝜎(𝑤0. ℎ𝑡−1𝑥𝑡 + 𝑏0)           //LSTM output                   Equation 3-14 
 

  ℎ𝑡 = 𝑂𝑡0 tanh(𝑐𝑡)         // FC layer                                     Equation 3-15 
 

 
Figure 3-6. Representation of  the repeating module in an LSTM  

 

The cell state carries the flow of information through the network with the cell state being 

changed in each unit by its layers.  

 

The forget gate decides how much of the previous hidden state, ℎ𝑡−1has to be kept based 

on to 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), which is also a function of the current input 𝑥𝑡. The activation 

function (e.g. sigmoid) could result in 0 and 1, with 1 meaning that all the information from the 

previous hidden state is kept. 

 The input gate performs an analogous decision, given by  𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖).  

 

Concurrently, a vector of candidate values is added to the cell state, based on 𝐶̃𝑡 =

𝑡𝑎𝑛ℎ(𝑊𝑐 [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑐). A hyperbolic tangent function is applied in this step, it has the same 

application as the sigmoid in the previous ones.  

The cell state is then updated using  𝐶𝑡 = 𝑓𝑡  ◦  𝐶𝑡−1 + 𝑖𝑡   ◦  𝐶̃𝑡 .  
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The output of each unit is given by the multiplication of the value at the output gate, 

calculated through 𝑂𝑡 = 𝜎(𝑤0ℎ𝑡−1𝑥𝑡 + 𝑏0) and the result of the application of the hyperbolic 

tangent to the previously calculated cell state. The resulting formula is  ℎ𝑡 = 𝑂𝑡  ◦ tanh(𝑐𝑡).  

 

This output may exist for every unit. The network could be one to many or many to many. 

However, it is possible to have outputs for some units or just for one of them, depending on if the 

mapping is one to one or many to one. Having said that, there are variants of LSTM, such as the 

peephole LSTMs or different LSTMs architectures, which use a couple of forget and input gates. 

 

3.4.5 Long Short-Term Memory (LSTM) For Classification  

 

LSTM, like any other Deep Neural Networks, use the stochastic gradient descent 

optimization algorithm to be trained. Stochastic Gradient Descent (SGD) is an iterative 

optimization method for objective functions with suitable smoothness properties (e.g. 

differentiable or subdifferentiable). It is widely used in high-dimensional optimization problems 

because it reduces the computational burden by achieving faster iterations in trade for a lower 

convergence rate. 

 

The optimization algorithm estimates the error for the current state of the model repeatedly. 

This requires the right choice of an error function, generally called a loss function, that can be used 

to estimate the loss of the model so that the weights can be updated to reduce the loss on the next 

evaluation or iteration. 
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Neural network models learn through mapping inputs to outputs in training sets (examples). 

The loss function must be matched with the framework of the predictive modeling problems which 

could be classification or regression. Further, the output layer also has to be appropriate for the 

chosen loss function. 

 

3.4.5.1 Many To One Classification Model 

 

This implementation is dealing with long-term EEG recordings which include sequence of 

timesteps as inputs. Finite sequence length from the data must be defined. At any timestep, t, we 

only back propagate the defined length through the sequence. This thesis considers different 

lengths of time from 1 to 4096 datapoint in 23.6 seconds for the sequence and assess the 

performance of the experiments. Figure 3-7 demonstrate the how sequence of the datapoints can 

be used to classification problems. 

 

Figure 3-7. Many to one classification in ANN architecture 
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Figure 3-7 illustrates high level sequential classification. The top gray rectangle as output, 

the bottom yellow rectangles as representation of sequential input and the middle blue rectangles 

are states of network during training in different time steps are depicted. 

 

In fact multi-class classifications are sub predictive modeling problems with more than two 

classes where each example can be as assigned as one class. The problem is often built as 

predicting an integer value, each unique integer value from 0 to (num_classes – 1) is assigned to a 

class. The problem is often implemented to predict the probability of the example belonging to 

each known class. 

 

The loss functions that are appropriate for multi-class classification predictive modeling 

problems is cross entropy, which will be discussed in section 3.4.5.2. 

 

This research applied deep learning to extract the discriminative EEG characteristics 

regarding to epileptic seizures. The proposed deep neural network includes 5 layers, including a 

Softmax layer. The EEG training sets were first fed into a LSTM layer with 100 cells to learn the 

short and long-term dependencies embedded in the EEG segment as input and between the 

different EEG signals belonging to the same and different signal recordings. Since the main job of 

LSTMs is to remember information for long periods of time(long sequence of datapoint ), it is the 

best choice for processing long-term EEG signals. This is the main competitive advantage of the 

LSTM architecture over other neural network architectures.  
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3.4.5.2 Loss Function  

 

The loss function is used to measure the performance of the model during training on a 

deep learning problem. Its objective is always to minimize the loss, the function in fact minimizes 

the calculated error during the training. Its output is a probability value between 0 and 1. The lower 

the probability the better model we have. Its value is given by Equation 3-16  

𝐿 =∑
1

𝑁
𝑙𝑜𝑔(𝑦̂𝑖)

𝑁

𝑖=1
               Equation 3-16 

 

where N is the number of samples and 𝑦̂𝑖 is the probability, given by the network, that sample i 

belongs to its true class. 

 

Since this application is a classification problem, I used the most important loss function 

called Cross-Entropy Loss. Cross-Entropy Loss is the loss function used for multi-class 

classification problems. Cross-entropy Loss increases as the predicted probability diverges from 

the actual label. where the output values are in the set {0, 1, 3, …, n}, and where each unique 

integer value is a representative class. Mathematically, it is the preferred loss function under the 

inference framework of maximum likelihood. Cross-Entropy assesses a score to summarize the 

average difference between the actual and predicted probability distributions for all classes in the 

problem. The score is minimized, and a perfect cross-entropy value is 0. Cross-entropy can be 

considered as the loss function in the Keras library which is used for LSTM implementation   

 

3.4.5.3 Labelling  

 

We considered seizure prediction as a two-class problem and as a three-class problem. In 

the two-class problem, every sample in a certain period preceding a seizure, called the Seizure 
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Occurrence Period (SOP), was labelled as pre-ictal while all the other samples are labelled as ictal 

which includes all the samples that belong to the interictal, ictal and postictal states. In the three-

class problem, data are labeled pre-ictal, interictal and ictal. 

 

3.4.5.4 Overfitting Control 

 

The method which is used to avoid overfitting in this model is dropout. Dropout is an 

approach to reduce overfitting and regularization. Some neurons, in layers during training, are 

randomly ignored. In other words, each neuron has a probability of not being used for the output 

computation, having no contribution during the back propagation of the errors. It looks like a layer 

with a different number of nodes and connectivity to the prior layer. Since the weights are shared 

between the different architectures, they become regularized. 

 

3.4.5.5 Optimizer 

 

 Adaptive Moment Estimation (Adam) was the optimization algorithm used to update the 

networks weights at each iteration. Adam is a method that computes adaptive learning rates for 

each parameter. It stores an exponentially decaying average of past gradients (first moment), and 

an exponentially decaying average of past squared gradients (second moment). 

 

3.4.5.6 Fully Connected Layers  

 

In fully connected layers, the last year responsible for preparing the processed data to 

produce the output is the Softmax layer. This layer can deal with all information from previous 

layers. Neurons in fully connected layers have connections to all the neurons from the previous 
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layer, behaving like traditional multi-layer perceptron. The final layer must have the same number 

of units as the classes in the output, so for example the algorithm for binary classification would 

have 2 units in its last layer. In a binary case, the logistic function can be used to yield the 

probability of each class. The Softmax, a generalization of the Logistic function, is used in the last 

layer to perform multi-class classification. 

 

3.4.6 High Level Implementation and Configuration of the Network 

 

Figure 3-8 shows the high-level process of the proposed seizure detection system. At the 

beginning, each time-series EEG recoding is first split into smaller non-overlapping segments. 

These segments are then passed into the LSTM layers. The output of LSTM layers  𝒚𝒊 is then fed 

into the fully connected Dense layer h to find the most prominent EEG features related to epileptic 

seizures. Finally, the Softmax layer completes the label predictions according to the features found 

in the previous layers. 

 

Figure 3-8. High level diagram of the proposed approach for seizure detection system 
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LSTM experiments on the EEG feature learning are conducted with the open-source library 

Keras. Keras is  an open-source software library that provide a Python interface for artificial neural 

networks.  

 

The total numbers of layers, including the number of LSTM cells and FC units were set to 

3 layers containing 100 nodes and 100 units respectively. An FC unit is the fully connected layer 

placed after the LSTM layers. The “return sequence” was set to “True” so that all EEG segments 

are considered in the feature extraction process. The batch sizes were set to 64 and the network 

parameters converged after approximately 2000 iterations with 40 epochs. The implementation 

was derived in Python using Keras backend and underwent 4 hours training on an Intel(R)i7-

8565U CPU@1.6HZ machine. Although the training of our end-to-end neural network model takes 

up to four hours, testing the trained model on new data takes less than a second. This fast-testing 

performance makes our model a perfect fit for the real-time processing of EEG signals in real-life 

and clinical applications. 

 

Although very deep and complex neural network structures could be powerful enough to 

learn all the useful information required for detecting epileptic seizures, increasing the size of the 

network and introducing more parameters to capture would increase the risk of overfitting. To 

address the aforementioned issues, this study proposes a novel deep neural network architecture 

that uses LSTM cells from RNN to effectively exploit the temporal dependencies in time-series 

EEG signals along with dropout layers to resolve overfitting issues. A fully connected layer is used 

on top of the LSTM layer to capture the most prominent and discriminative EEG attributes 

associated with epileptic seizures. the pseudocode of the algorithm is described next. 

Algorithm: Seizure Detection using Deep neural network (Long-Short-Term Memory). 
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Input: x→EEG signals;  
Output: Trained LSTM model with optimal accuracy  
 
Initialization: d 4096; M 2048; 
 
Data preprocessing 
 K number of EEG classes; K = 2 and 3, for two-class, three-class, and detection problems. 
 EEG segment length change from L ∈ {20, 21,22, , · · · , 212  }and partitioning into segments;  
Procedure LSTM(x, K, LSTM) 

while t >M do 
𝒇𝒕 = 𝝈(𝑾𝒇 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇)     // forget gate 

𝒊𝒕 = 𝝈(𝒘𝒊. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊)                 // input gate 
𝑪̃𝒕 = 𝒕𝒂𝒏𝒉(𝑾𝒄 . [𝒉𝒕−𝟏,𝒙𝒕] + 𝒃𝒄)                // output gate 

𝑪𝒕 = 𝒇𝒕𝟎𝑪𝒕−𝟏 + 𝒊𝒕 𝟎  𝑪̃𝒕                 // cell 
𝑶𝒕 = 𝝈(𝒘𝟎. 𝒉𝒕−𝟏𝒙𝒕 + 𝒃𝟎)                // LSTM output 
𝒉𝒕 = 𝑶𝒕𝟎 𝒕𝒂𝒏𝒉(𝒄𝒕)     //FC Layer 

End 
Compute Pk = {P1, · · · , PK} //softmax(E) 
Find (max(Pk)) . class of highest probability 
y˜ =  Predicted class label 

 
End  
     

𝒙𝒕 and 𝒚𝒕 are the LSTM input and output vectors respectively at time t. 𝛔, g, and h are the 

point-wise activation functions. The logistic sigmoid 𝛔 (.) is used as the gate activation function 

and the hyperbolic tangent g(.) = h(.) = tanh(.) is used as the input and output activation function 

respectively.  Denoted by the point-wise multiplication of two vectors 𝒙𝒕 and 𝒚𝒕  are input and 

output vectors of the LSTM at time t. We then obtain the following weights for an LSTM layer:  

• Input weights: 𝑾𝒄, 𝑾𝒊, 𝑾𝒇, 𝑾𝒐 ϵR  

• Bias weights: 𝒃𝒄, 𝒃𝒊, 𝒃𝒇, 𝒃𝒐 ϵR  
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3.5 Summary 

 

As previously described, EEG or Electroencephalography signals records the electrical 

activity of the brain neurons and is widely used to diagnose various brains problems. This data 

captured from the electrodes will be in time series form, and the signals can be classified into 

different classes related to occurrence of incidence. This thesis develop a Long Short-Term 

Memory network model (LSTM) for occurrences seizure based on the benchmark clinical EEG 

dataset provided by Bonn University. LSTM network model is a type of recurrent neural network 

that could to learn dependencies and then remember them over long sequences of input data. it is 

intended for use with data that is comprised of long sequences of data, up to 200 to 4000 time steps 

for different problems. This research performed different experiments described in Chapter 4 on 

different length of sequences of data on variant sets in the dataset to get highest accuracy of 

performance in order to automate the procedure of seizure detection. 
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Chapter 4 

Performance Evaluation 

In this Chapter, experimental results are reported. The same configuration of the LSTM 

algorithm with different sets for two classifications (binary and ternary) is implemented in Python. 

I use Python with different libraries including NumPy, Matplotlib, Pandas, Seaborn, Keras and 

Sklearn. . 

 

In first part, the binary classification (normal vs. ictal) is implemented. Classifications are 

built on pattern of EEG signals taken from epileptic patients while experiencing active seizures 

(set E) and the normal EEG signals taken from healthy subjects (set A) or any other normal and 

non-seizure brain activities like sets B, C or D, which is considered as a different class 

combination.  

 

In the second part, the three-class EEG classification is analyzed. It is another seizure 

detection problem type which separates normal EEG taken from healthy subjects, inter-ictal EEG 

taken from epileptic patients throughout seizure-free intervals, and ictal EEG recorded from 

epileptic patients while experiencing active seizures. This kind of classification problem is more 

sophisticated compared to the previous two-class problem. This type of classification considers 

the EEG sets C and D obtained from different epileptogenic brain zones, corresponding to the 

same class inter-ictal as separate class to identify alternation of EEG patterns. Since the EEG 

signals are recoded from different location of brain. This classification problem also involves 

localization and topology of seizure occurrence in the brain. 
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The performance of the proposed model is measured for each classification with a variety of 

different lengths of EEG signals. The experiments are organized to evaluate the performance of 

the LSTM algorithm and determine an optimal length of recording to achieve the highest 

performance accuracy. 

 

4.1 Experimental System 

All the experiments are performed on an ASUS ZenBook with a 2.53Ghz Inter Core i3 CPU, 

with 300 GB hard disk and 2.0GB of memory. The code is written in Python3.7 and run-on 

Windows 10 professional with 64-bit operating system.  

 

4.2 Experimental Measurements 

Experiments are conducted on the clinical dataset, described elaborately in Chapter 3. For 

this work, nineteen different combinations of classes were considered with different size segments 

for classifying them into being epileptic or non-epileptic. To evaluate the performance of the 

proposed LSTM based on deep learning approach, the performance was evaluated based on 

standard metrics like classification accuracy, sensitivity, specificity, precision, and F-score for all 

the binary and ternary classes as described below. Equation 4-1to 4-5 are their formulas 

Specificity(Spec)=  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                          Equation 4-1 

Sensitivity(Sens)or Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
           Equation 4-2 

Accuracy(Acc)=  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 Equation 4-3 

Precision(Prec)=  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            Equation 4-4 

F Score=  
2∗𝑃𝑟𝑒𝑐∗𝑆𝑒𝑛𝑠

𝑃𝑟𝑒𝑐+𝑆𝑒𝑛𝑠
                                  Equation 4-5 
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Here, TP refers to the number of predictions that are actually epileptic and predicted as 

epileptic class. FP indicates non-epileptic class predicted by the classifier as mistakenly epileptic. 

TN refers to actual non-epileptic class predicted as non-epileptic class while FN indicates epileptic 

and predicted wrongly as non-epileptic class.  

First, the Tables 4-1 to 4-14 below show the classification Accuracy, Precision, and F1 

score for 14 different binary class combinations. Likewise, in the second part, the performance of 

the model for ternary class combinations are presented in the Tables 4-15 to 4-19. 

 

 I analyze the performance of my proposed seizure detection approach under different 

segmentations and class combination conditions. The results are comparable to those of the other 

seizure detection methods that use the same dataset in [ILA2020], [HUS19] and [NIC12]  .The 

detection performance was tested by using the metrics of sensitivity (Sens), specificity (Spec), 

classification accuracy (Acc), Precision (Prec) and fScore.  

 

The experiments on the binary classification can be divided into two parts: 

The first part of the two-class seizure detection problem is to distinguish between the normal EEGs 

obtained from healthy cases (sets A and B) and seizure EEGs recorded from epileptic patients 

while experiencing active seizures (set E). It refers to A-E (Table 4-1) and B-E experiments (Table 

4-2) respectively. Furthermore, any non-seizure activities (Inter-ictal EEG sets C or set D and 

seizure activities (set E) are tested separately as well. Experiments on C-E, D-E sets are 

demonstrated on the Table 4-3 and Table 4-4 respectively. 
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In the second part of binary classification, any combination of classes related to non-seizure 

activities (sets A, B, C, or D) are considered for classifying the segments into being epileptic/non-

epileptic conditions. It refers to experiments AB-E (Table 4-5), AC-E (Table 4-6), AD-E (Table 

4-7), BC-E (Table 4-8), BD-E (Table 4-9), CD-E (Table 4-10), ABC-E (Table 4-11), ABD-E 

(Table 4-12), BCD-E (Table 4-14) and ACD-E (Table 4-14). 

 

Taking this into account that each EEG set (A, B, C, D and D) comprises 100 signals, this 

classification approach has an imbalanced class distribution in the dataset. Since the number of 

EEG samples belonging to the seizure class(E) is significantly lower than the number of EEG 

samples of the non-seizure class.  

 

The traditional machine learning approaches of seizure detection systems performed poorly 

for the imbalanced class distribution dataset, and they were inaccurate and prejudiced in the 

minority class. The proposed methods can decently handle this sort of classification troubles and 

overcome the imbalanced distribution in the dataset. Again, I assessed the performance in different 

terms of precision, fScore, and classification accuracy values. The seizure detection results 

achieved by the proposed are reported in the Tables 4-1 to 4-19. They provide evidence of 

improvement  of the proposed approach over the state-of-the-art methods, by achieving and 

maintaining the topmost performance of over 98.00% for each of the precision, fscore, and 

classification accuracy in different length for each classification problems. 
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Table 4-1-Performance measures of binary class of A-E 
A-E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

87.3 87.4 89.1 92.1 95.0 100 98.7 99.7 99.6 99.1 99.3 100 100 

Precision 
(%) 

75.7 74.8 78.2 90.2 90.1 100 97.6 99.3 99.3 99.3 98.7 100 100 

F score 
(%) 

87.3 87.2 78.2 92.1 95.1 100 98.8 99.6 99.6 94.4 99.3 100 100 

 

Table 4-2-Performance measures of binary class B-E 
B-E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

87.3 80.6 84.3 87.6 92.9 100 97.7 98.7 100 98.7 98.7 99.1 99.5 

Precision 
(%) 

74.7 61.2 68.5 75.2 85.9 100 95.6 97.5 100 97.7 97.5 97.2 98.2 

F score 
(%) 

87.3 80.6 84.2 87.6 92.9 100 97.8 98.7 100 98.8 98.7 98.6 98.6 

 

Table 4-3-Performance measures of binary class C-E 
C-E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

84.6 86.0 87.6 89.8 91.9 100 96.3 98.4 100 100 98.1 100 92.5 

Precision 
(%) 

69.3 72.0 75.3 80.0 83.7 100 95.7 96.8 100 100 96.2 100 91.8 

F score 
(%) 

84.6 86.0 87.6 90.0 91.8 100 96.3 98.4 100 100 98.1 100 94.9 

 

Table 4-4-Performance measures of binary class of D-E 
D-E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

82.1 84.2 84.3 87.6 88.9 100 93.2 96.1 100 96.2 95.6 93.7 97.5 

Precision 
(%) 

64.2 68.4 68.5 75.4 77.5 100 86.7 92.3 100 93.1 91.2 85.4 96.8 

F score 
(%) 

82.1 84.2 84.2 87.7 88.7 100 93.3 96.1 100 96.5 95.6 92.7 98.4 
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Figure 4-1. Accuracy Comparison of first part of binary classification in Seizure detection 
 

 

Figure 4-2. Fscore comparison of first part of binary classification in Seizure detection 
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Figure 4-3. Precision comparison of first part of binary classification in Seizure detection 

 

The Figure 4-1 to 4-3 and Tables 4-1 to 4-4 show the results for the first part of the binary 

experiments. The results achieved by the proposed method prove the model performs effectively 

on  set A for  seizure and non-seizure detection. However, when the lengths EEG signals are sliced 

into a segmentation  with less than 32 datapoints (approximately  less than 1 second of  EEG 

recording) the accuracy and effectiveness of algorithm is diminished to almost 70. See Figure 4-1 

to  Figure 4-3 show this performance reduction. 

Table 4-5-Performance measures of binary class of AB-E 
AB - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

84.6 86.0 87.6 89.8 91.9 100 96.3 98.4 100 100 98.1 100 92.5 

Precision 
(%) 

69.3 72.0 75.3 80.0 83.7 100 92.7 96.8 100 100 96.2 100 91.8 

F score 
(%) 

84.6 86.0 87.6 90.0 91.8 100 96.3 98.4 100 100 98.1 100 85.9 
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Table 4-6-Performance measures of binary class AC-E 
AC - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

87.1 89.1 90.1 90.5 94.3 95.9 98.0 98.5 99.1 98.9 99.5 97.5 97.5 

Precision 
(%) 

79.3 78.3 80.1 81.1 88.4 91.5 96.0 97.0 98.1 97.9 99.2 95.3 95.3 

F score 
(%) 

87.1 89.1 90.1 90.5 94.2 95.7 98.0 98.5 97.2 98.9 99.6 97.6 97.6 

 

Table 4-7-Performance measures of binary class AD-E 
AD - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

87.3 88.3 89.4 90.6 92.3 93.9 96.1 97.3 97.7 97.5 95.0 97.5 98.0 

Precision 
(%) 

77.3 76.5 78.8 81.3 84.6 93.9 92.4 94.6 95.4 95.0 93.1 77.3 76.5 

F score 
(%) 

86.5 88.2 89.4 90.6 92.3 93.9 96.2 97.3 97.7 97.5 96.5 97.6 94.8 

 

Table 4-8-Performance measures of binary class BC-E 
BC - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

83.9 84.9 85.0 85.9 93.1 95.0 97.1 98.5 98.4 97.0 97.0 95.8 99.7 

Precision 
(%) 

70.7 71.9 71.1 71.9 86.2 90.2 94.2 97.0 96.8 94.1 94.5 92.1 99.4 

F score 
(%) 

84.6 85.9 84.1 85.9 93.1 95.1 97.1 98.5 98.4 97.0 97.2 96.0 99.8 

 

Table 4-9-Performance measures of binary class BD-E 
BD - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

83.9 84.9 85.0 85.9 93.1 95.0 97.1 98.5 98.4 97.0 97.0 95.8 99.7 

Precision 
(%) 

70.7 71.9 71.1 71.9 86.2 90.2 94.2 97.0 96.8 94.1 94.5 92.1 99.4 

F score 
(%) 

84.6 85.9 84.1 85.9 93.1 95.1 97.1 98.5 98.4 97.0 97.2 96.0 99.8 
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Table 4-10-Performance measures of binary class CD-E 
BD - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

86.5 87.8 87.8 88.7 91.9 93.3 95.9 96.3 97.4 97.5 96.5 95.8 96.6 

Precision 
(%) 

73.0 75.6 87.4 77.5 83.8 86.3 91.9 92.7 94.7 95.0 95.0 92.1 93.3 

F score 
(%) 

86.5 87.8 86.7 88.7 91.9 93.1 95.9 96.3 97.4 97.5 97.5 96.0 96.6 

 

 

 

Figure 4-4. Accuracy comparison of second part of binary classification in Seizure detection 
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Figure 4-5. Precision comparison of second part of binary classification in Seizure detection 

 

 

Figure 4-6. Fscore comparison of second part of binary classification in Seizure detection 
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method on second part also prove that the model performs effectively on different combination of 

sets to seizure /non seizure classification. Similarly, the observations prove the length of the EEG 

segmentation  plays a key role in the accuracy and effectiveness of algorithm. 

Table 4-11-Performance measures of binary class ABC-E 
ABC - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

86.8 89.3 90.8 92.0 94.6 96.4 98.0 98.1 99.1 99.5 95.9 93.7 93.7 

Precision 
(%) 

76.6 78.7 81.7 84.0 89.2 92.9 96.2 96.3 98.2 99.0 91.8 87.5 85.4 

F score 
(%) 

85.8 89.3 90.8 92.0 94.6 96.4 98.1 98.1 99.1 99.5 95.9 93.7 92.7 

 

Table 4-12-Performance measures of binary class ABD-E 
ABD - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

87.8 88.5 89.7 91.1 93.4 95.3 96.7 98.2 98.2 95.6 98.4 95.6 88.7 

Precision 
(%) 

78.6 77.1 79.5 82.2 86.8 90.7 93.5 96.4 96.4 91.2 96.8 91.2 75.0 

F score 
(%) 

86.8 88.7 89.7 91.1 93.4 95.3 96.7 98.2 98.2 95.6 98.4 95.6 87.5 

 

Table 4-13-Performance measures of binary class BCD-E 
BCD - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

89.8 88.3 89.4 91.1 93.1 94.8 96.5 98.5 97.6 96.0 95.9 96.8 93.7 

Precision 
(%) 

79.6 76.7 78.9 82.3 86.2 89.7 93.1 97.1 95.3 92.1 91.8 93.7 89.5 

F score 
(%) 

89.8 88.3 89.4 91.1 93.1 94.8 96.5 98.5 97.6 96.0 95.9 96.8 94.7 
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Table 4-14-Performance measures of binary class ACD-E 
ACD - E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

88.8 89.8 91.2 92.3 93.9 95.0 96.5 98.2 98.5 95.3 97.8 96.2 92.5 

Precision 
(%) 

78.6 79.6 82.4 84.6 87.9 90.0 93.0 96.4 97.0 95.3 95.3 92.5 85.4 

F score 
(%) 

86.5 89.8 91.2 92.3 93.9 95.0 96.5 98.2 98.5 97.6 95.3 96.2 92.7 

 

 

 

 

Figure 4-7. Accuracy comparison of third part of binary classification in Seizure detection 
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Figure 4-8. Precision comparison of third part of binary classification in Seizure detection 

 

 

Figure 4-9. Fscore Comparison of third part of binary classification in Seizure detection 
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Figure 4-7 to 4-9 and Tables 4-11 to 4-14 also show the results for the second part of binary 

experiments when 3 sets are chosen for non-seizure class . The results achieved by the proposed 

method on second  part of experiment for binary classification prove the model performs 

effectively as well on different combination of sets to seizure /non seizure classification. Length 

of EEG signals can play a significant role in the effectiveness of the model so that its accuracy and 

precision increase by growing the size of EEG recording from1 to 512 and then algorithm face a 

challenge to detect the seizure for recoding larger than 1024. Figure 4-7 shows this accuracy 

reduction. This can be due to the number of dependencies in long sequence of data. Since they 

increase as variables and dependencies in the LSTM algorithm and the algorithm faces problem to 

recognize their relation and to identify the biomarker of seizure.  The other possible reason is the 

current number of layer and neurons in configuration of neural network in the algorithm are not 

adequate to capture and learn this complexity since the increasing the length, of EEG segmentation 

make us to consider more dependencies. But we have to bear in mind that increasing numbers of 

layers and neurons lead to cost memory and time cost in the implementation. 

 

In the second part, this research also evaluated the capabilities of the proposed method to 

differentiate between three defined classes of EEG recordings: normal, inter-ictal, and ictal. 

Figures 4-11 to 4-12 and Tables 4-15 to 4-19 show the performance metrics achieved by the 

proposed method on ternary classification. The achieved results can compete with other existing 

method results previously reported on the same clinical EEG dataset [ILA2020] [HUS19] [NIC12]. 

The proposed approach results provide initial evidence that yields an improved precision, Fscore, 

and classification accuracy. The key reason for this classification improvement with the use of 

LSTM is to figure out the correlation between the EEG signals taken from different subjects and 
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the dependencies among EEG segments of the same subject [HUS19]. This study also investigated 

the robustness of the proposed seizure detection approach in different segmentation sizes. 

 

This deep recurrent neural network utilized on the experiments and presented a reliable 

EEG feature learning algorithm on ternary classification that can deal with different length of 

data for training and extracting the features. However, this research also shows that our deep 

learning model can effectively detect occurrence of seizure by capturing seizure feature in EEG 

recording when then length of the EEG signal meets the requirement. 

Figure 4-1 to Figure 4-9 demonstrate the overall performance of the proposed approach 

when the length of recording is varied for different classes. It is clearly shown that in the proposed 

approach, the optimal length for extracting and training model is highly dependent on the data set. 

LSTM networks can effectively extract the most faithful and robust EEG representations pertinent 

to epileptic seizures. 

Table 4-15-Performance measures of Ternary class AB-CD-E 
AB-CD- E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

50.5 62.3 69.2 74.9 81.9 85.8 91.5 94.6 97.1 97.1 85.0 80.5 81.0 

Precision 
(%) 

52.1 42.1 53.5 62.4 72.8 78.8 87.4 91.9 95.6 95.6 77.9 71.7 83.1 

F score 
(%) 

58.6 59.2 68.4 74.6 81.8 85.8 91.6 94.6 97.1 97.1 85.3 80.9 88.7 

 

Table 4-16-Performance measures of Ternary class A-D-E 
A-D- E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

51.5 63.0 69.9 75.1 80.6 84.7 88.3 91.3 94.6 93.7 84.1 88.3 85.0 

Precision 
(%) 

55.1 67.5 54.4 62.7 71.1 76.9 81.5 86.9 92.0 90.6 76.8 82.8 77.9 

F score 
(%) 

50.6 59.8 68.5 74.7 80.6 84.6 87.6 91.2 94.6 93.7 84.5 88.5 85.2 
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Table 4-17-Performance measures of Ternary class A-C-E 
A-C-E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

65.2 64.0 69.7 75.2 80.7 84.9 88.0 91.3 93.1 94.7 91.6 94.1 91.6 

Precision 
(%) 

67.7 68.2 54.1 62.8 71.0 77.4 82.3 86.9 89.6 92.1 85.9 91.4 87.2 

F score 
(%) 

63.2 60.8 68.2 74.8 80.5 84.9 88.1 91.3 93.1 94.7 90.6 94.2 91.5 

 

 

 

 

 

 

Table 4-18-Performance measures of Ternary class B-D-E 
B-D-E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

65.2 71.7 77.1 77.1 83.1 85.5 90.1 93.8 95.9 96.2 87.9 80.8 90.0 

Precision 
(%) 

47.7 57.3 65.6 65.6 74.6 78.3 85.4 90.6 93.9 94.5 74.1 81.8 86.2 

F score 
(%) 

63.2 70.5 76.6 76.6 82.9 85.5 90.2 93.7 95.9 96.3 80.4 815. 90.7 

 

 

Table 4-19-Performance measures of Ternary class B-C-E 
B-C-E 

 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒 𝟐𝟓 𝟐𝟔 𝟐𝟕 𝟐𝟖 𝟐𝟗 𝟐𝟏𝟎 𝟐𝟏𝟏 𝟐𝟏𝟐 
Accuracy 
(%) 

65.2 66.3 72.2 78.5 85.8 87.6 90.5 90.5 96.2 95.2 95.4 93.3 83.3 

Precision 
(%) 

48.7 48.8 58.1 67.7 78.8 81.5 85.8 85.8 94.3 92.8 91.8 89.8 78.8 

F score 
(%) 

63.2 64.0 71.3 78.1 85.8 87.6 90.5 90.5 96.2 95.2 94.5 93.2 85.6 
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Figure 4-10. Accuracy comparison of ternary classification in Seizure detection 
 

 

Figure 4-10. Precision comparison of ternary classification in Seizure detection 
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Figure 4-11. FScore comparison of ternary classification in Seizure detection 

 

The last part of seizure detection experiment is dedicated to ternary classification. My 

research goal is to recognize normal EEG taken from healthy subjects, Inter-ictal EEG taken from 

epileptic patients throughout seizure-free intervals and Ictal EEG recorded from epileptic patients 

while experiencing active seizures. Five distinct set combinations are tested on different length 

recordings to determine the best combination and optimal length for effectiveness of the algorithm. 

 

The results achieved by the proposed method on ternary classification demonstrate that the 

model has similar efficiency on 5 different combinations of sets. The performance of algorithm 

can be increased by incrementing the length of the recoding. It was found that 512 and 128 data 

points in segments are the most optimal lengths for a good effectiveness of seizure detection. The 

outcome from the experiment shows that for higher lengths of 512 datapoint (5 seconds) the 

algorithm faces a challenge to figure out the features automatedly. 
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Even though the three-class EEG classification is an intractable problem, particularly in 

small lengths of EEG recordings, the proposed method is proven to maintain high seizure detection 

results between 32 and 2048. For instance, it yields a classification accuracy larger than 94% when 

the length of EEG signals is 256 datapoints. The classification accuracy drops to 80.50% for 

shorter lengths of EEG recordings though. However, in realistic situations the length of recording 

would be more than large enough to be passed into algorithm, thus the proposed method could 

achieve a notable performance. 

 

The corresponding matrices for both selected binary and ternary classes combinations 

related to the different length of EEG segments were investigated. The results indicate that the 

proposed system maintained a high performance for all class combinations of both binary and 

ternary classification. For example, on the cases with optimized length segments the accuracy is 

above 95%.  

 

This dissertation demonstrates the impact of the EEG segment length on the detection 

accuracy of epileptic seizures. The common assumption is that longer segment lengths lead to 

improvements on seizure detection accuracy. Although increasing the length of segment would 

seemingly increase seizure detection accuracy, it needs to be noted that there is maximum for 

achieving the highest accuracy. This is what the experimental results plots in Figures 4-1 to 4-11 

show that increasing the length of the segment by 1024 would not assure an increment of seizure 

detection accuracy. The most optimized length for building a model and achieving the highest 



76 

 

accuracy is dependent on sets of a general length between 128 and 1024 datapoints of EEG 

recording, which could increase effectiveness of detection and prediction of seizures in patients.  

 

Besides accuracy, F1-score and precision were also measured. The reason for choosing 

accuracy is because it is mostly used measurement when the true positives and true negatives are 

more important for making dissection. F1-score is mostly used when classes are imbalanced, and 

the false negatives and false positives are crucial. Precision also assesses the ratio of correctly 

predicted positive observations to the total predicted positive observations. 

 

We see that the proposed approach of using stacked LSTM based RNN models perform 

better than existing approaches reported in the literature [HUS19], [ELF20]  [ILA2020] [RAJ12], 

[ARC12a]. For all binary classes with an accuracy of (98.5±1.5) %. For ternary class combinations, 

the proposed system has an accuracy of (95±2) % with finding the optimized length for building 

models based on observation and different experimental scenarios. These results can be considered 

as a guideline for future works to attain the highest accuracy. 

 

4.3 Summary 

Chaotic dynamical systems like EEG may evolve complex structures and neither fixed and 

long lengths of recording nor short lengths of recording could guarantee better accuracy as plots 

and tables demonstrated in Section 4.2. 

 

The brain is a nonlinear dynamic system, and the EEG signals are modeled as time series 

chaotic data. The novelty of this study is the use of different length size of segments as input to 
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the RNN model to research at which lengths could the algorithm achieved the highest accuracy, 

since the algorithm itself completely cannot handle this matter. We further employ different 

stacked LSTM layers for the seizure detection problem. We report an accuracy of (98.5±1.5) % 

(epileptic vs. non-epileptic) and (95±2) % (normal vs. interictal vs. ictal) which is higher than most 

existing results in the literature. This research highlight that the proposed approach can model the 

dynamic nature of the EEG signals. The deep LSTM model can accurately capture the features in 

the EEG signals and perform classification with high accuracy for 19 different class combinations. 

The outcome of the proposed system using EEG signals could be used in supporting physicians to 

detect epilepsy and may serve as a precursor to assist the neurologist in building models and 

classifying the epileptic states of patients with further research.  
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Chapter 5 

Conclusion And Future Work 

5.1 Conclusion 

This thesis focuses on robust methods for detection and prediction of epileptic seizures. First, 

it described the importance of this issue to epileptic patients for their quality of life. Then, the 

influence of a variety factors including length of data segmentation and classification on prediction 

performance was analyzed through extensive experiments on real EEG data taken from normal 

people and  patient with epileptic seizures. 

 

To enhance the performance of the seizure detection system, a new recurrent neural network 

(RNN) configuration was proposed and implemented that was able to detect epileptic seizure 

patterns accurately. The developed RNN architecture utilized a long short-term memory (LSTM) 

architecture to capture both the low- and high-level representations of the EEG patterns. The goals 

of this study are to answer the questions: (a) how is it possible to improve the accuracy of detection 

to extract the temporal dependency in different combinations of classes considered for being 

epileptic/non-epileptic, (b) what is the optimal length to consider in  the proposed deep learning 

approach to maintain a robust seizure detection performance, and (c) can the proposed deep neural 

system  sustain robust seizure detection performance under changing length and shortage of data? 

 

Extensive experiments on a real-world clinical dataset show initial evidence that the 

proposed approach can effectively recognize different seizure patterns by extracting a high level 

sequence of features recorded from several patients and can precisely differentiate between the 
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seizure and non-seizure brain activities. Experimental results provided evidence that the proposed 

research algorithms obtain better classification and prediction accuracy compared to some studies 

reported in the literature for the utilized dataset. The proposed algorithms have the potential to be 

used in diagnostic clinical  applications . 

 

5.2 Future work 

This dissertation is a step forward in the realm of epileptic seizure detection and prediction. 

There is still a lot that can be done regarding this problem as well as other deep learning approaches 

in the extended health field. It has showed what was already possible with the given available data 

and allowed us to identify limitations and perspectives about what is required to be done to make 

more robust models in future experiments. Since the EEG dataset used in this experiment was 

obtained from five healthy volunteers and five epileptic patients, the interpreting and generalizing 

of the results have been done cautiously. Further experiments require larger datasets to generalize 

our research results. 

 

Larger EEG dataset, consisting of recorded electrical activity of many more patients, enable 

the deep neural network model to learn from the more diverse patterns of epileptic seizures across 

patients, and hence boost its communalization since the performance of deep neural networks 

improves as the size of training data increases. 

 

Another suggestion is to access long-term EEG recording signals to extend research scope 

to identify the pre-seizure EEG activities and bring awareness to epileptic patients of upcoming 

seizures through learning different patterns of interictal, preictal, and post ictal. Moreover, since 
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this proposed approach exploited the single-channel EEG data as univariate variable, multivariate 

and other neural networks, like convolution neural network with some adjustment can be used to 

exploit the spatial correlations between the EEG epochs from different channels on the scalp. 

 

Even though EEG and invasive EEG signals are the main method to identify abnormalities 

and seizure occurrence, each has their own pros and cons that need to be considered. Although 

invasive EEG is assumed more reliable than scalp EEG for brain activity recording and achieving 

more accurate seizure prediction performance, the patients must carry the burden of brain surgery 

for implementation of electrodes and its side effects including cost of surgery and threat of 

infection. Broad, in-depth research is required to outweighed merits and demerits of both 

approaches for epileptic seizure detection and prediction. 

 

There are other data collection technologies available to take advantage of the performance 

enhancement along with the patient undertaking less inconvenience. These technologies include 

accelerometer sensor, electromyography (EMG), electrocardiography (ECG), and electrodermal 

screening (EDS) in addition to EEG scalp. These technologies can provide complementary data 

that enhances the epileptic seizure detection and prediction 

 

With the availability of large dataset that retain longer recordings of EEGs, beneficial 

algorithms can be developed to enable awareness for patients and care givers to give treatment a 

half hour before the onset of a seizure. potentially curing, but improving the patient’s quality of 

life. There are still significant unknowns about epilepsy, but the results from recent and subsequent 
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research strengthen the hope that one day the mysteries surrounding this disease will be unraveled 

and make life for family members and patients more enjoyable. 
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Appendix A Dataset Description  

 

Table A-1. Description of the EEG database from University of Bonn 

Dataset 
Subject 

details 

Patient 

status 

Electrode 

type 

Electrode 

placement 

Duration 

(second) 

Set A 
Five healthy 

subjects 

(normal) 

Awaken 

state with 

open eyes 

Surface 
International 

10-20 system 
23.6 

Set B 

Awaken 

state with 

eyes closed 

Surface 
International 

10-20 system 
23.6 

Set C 

Five 

epilepsy 

patients 

Interictal 

(seizure-

free) 

Surface 

Opposite to 

epileptogenic 

zone 

23.6 

Set D 

Interictal 

(seizure-

free) 

Intracranial 
epileptogenic 

zone 
23.6 

Set E 
Ictal 

(seizure) 
Intracranial 

epileptogenic 

zone 
23.6 
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Appendix B Softmax Function 

The Softmax function, ℎ𝜃(𝑥), is defined as follows: 

 

ℎ𝜃(𝑥) =
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                    Equation B-1 

 

 

𝜃1, 𝜃2, · · · , 𝜃𝑘are the softmax parameters. The “cross entropy”  𝐽(𝜃) is the cost function that is 

often used with Softmax. 

 

𝑗(𝜃) = [∑

𝑁

𝑖=1
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   ]    Equation B-2 

 

 

𝕃 {.} is the “indicator function”, it equals to 1 when the statement is true otherwise it is 0. The 

stochastic gradient descent is applied to minimize the cost function and to maximize the 

probability of the true class label [JAN16] 

 

 


