
Inside Out: Transforming Images of
Lab-Grown Plants for Machine Learning
Applications in Agriculture – Supplementary
Material
Alexander E. Krosney 1,2, Parsa Sotoodeh 3, Christopher J. Henry 3,∗, Michael
A. Beck 3 and Christopher P. Bidinosti 2,3
1University of Manitoba, Department of Computer Science, Winnipeg, Manitoba,
Canada
2University of Winnipeg, Department of Physics, Winnipeg, Manitoba, Canada
3University of Winnipeg, Department of Applied Computer Science, Winnipeg,
Manitoba, Canada
Correspondence*:
Christopher J. Henry
ch.henry@uwinnipeg.ca

This is supplementary material for the Article Inside
Out: Transforming Images of Lab-Grown Plants for
Machine Learning Applications in Agriculture with
DOI 10.3389/frai.2023.1200977. This document
contains the two appendices below for this article.

APPENDIX 1 IMPROVED INDOOR
BOUNDING BOX ALGORITHM

Here we present an algorithm used to obtain tighter
bounding boxes for our multi-plant lab images. The
algorithm functions by mapping all sub-regions of
a multi-plant image to the correct plants. For the
purpose of this paper, we will refer to these regions
as fragments.

Initial, loose bounding boxes are immediately
determined through geometric calculations relating
the plant position in the scene and the camera posi-
tion/angle. These initial bounding boxes include an
additional tolerance to help ensure that the plants
are fully contained within the box, resulting in a
conservative estimate for the plant position within a
given image. The loose bounding boxes are readily
available in the indoor plant database when down-
loading the multi-plant images. An example of an
indoor multi-plant image with the original bounding
boxes is given by Figure 19.

The first step is to remove the image background,
here we convert a BGR image to CIELAB color
space. The benefit to operating in CIELAB space is
in the a- and b-channels of the image. The a-channel
has a low magnitude for green pixels, and large for
red. Similarly, the b-channel has a low magnitude
for blue pixels, and large for yellow. We create an

overall image mask through addition of a- and b-
channel masks, where we set any pixel with a-value
greater than a cutoff to zero and any pixel with
b-value less than b cutoff to zero. The addition
of the two masks results in a value of 0 anywhere
the a-channel of a pixel is greater than a cutoff
and the b-channel is less than b cutoff and a
value of 255 for all other pixels in the image. In
general, we assign the values a cutoff = 130
and b cutoff= 95. A border around the image is
also constructed so that plants that reach the outside
of the image are correctly labelled as fragments in
the proceeding step. Algorithm 2 provides the code,
written in NumPy and OpenCV, used to construct
the image mask.

Next, all fragments in the masked image are found.
Image opening (equivalent to erosion, followed by
dilation) is used to remove small fragments in the
image that would otherwise be difficult to assign to
or may not belong to any plant. Then, any fragments
with size below size cutoff (typically set to
200 px) are removed. Algorithm 3 provides the
code for this operation.

We now possess several image fragments with a
unique label and must associate each to a plant in the
original image. For each fragment f ∈ F , the centre
of mass c(f) = (xf , yf) is evaluated where xf and
yf are the x- and y-coordinates of the fragment,
respectively. Additionally, for each plant p ∈ P , the
centre of the plant c(p) = (xp, yp) is found using
the image metadata. We initialize a distance matrix
D ∈ Mat(|P| × |F|) where D := (d(p, f)) and
d(p, f) is the Euclidean distance between the centre
of the plant p and the centre of mass of the fragment
f .

1

Krosney et al.

Figure 19. Indoor multi-plant image with the original bounding boxes shown in green. A conservative
estimate of the plant position leads to loose bounding boxes for each plant. Plants that are overlapping or
are too close to the image border do not receive bounding boxes.

Algorithm 2 Algorithm for removing the multi-
plant image background

1: import cv2
2: import numpy as np
3:
4: # Input: master = original image read as

3-dimensional array
5:
6: # convert master into LAB color space and

extract b-channel, a-channel
7: lab = cv2.cvtColor(master,

cv2.COLOR BGR2LAB)
8: a channel = np.array(lab[:, :, 1])
9: b channel = np.array(lab[:, :, 2])

10:
11: # masking
12: , b mask = cv2.threshold(b channel, b cutoff,

128, cv2.THRESH BINARY)
13: , a mask = cv2.threshold(a channel, a cutoff,

127, cv2.THRESH BINARY INV)
14: mask = (a mask + b mask)
15: mask[mask < 129] = 0
16:
17: # introduce 1px frame around interior
18: mask[:, 0] = 0
19: mask[:, mask.shape[1] - 1] = 0
20: mask[0, :] = 0
21: mask[mask.shape[0] - 1, :] = 0

Algorithm 3 Algorithm for generating fragments
from mask

1: import cv2
2: import numpy as np
3: from scipy.ndimage import measurements
4:
5: # open mask for fast removal of small fra-

gments
6: kernel = np.ones((k size, k size), np.uint8)
7: thresholded = cv2.morphologyEx(mask,

cv2.MORPH OPEN, kernel)
8:
9: # label fragments

10: labels, n fragments = measure-
ments.label(thresholded)

11: thresholded copy = thresholded.copy()
12:
13: # remove small fragments, 0 is the background
14: for frag number in range(1, n fragments+1):
15: if measurements.sum(thresholded, labels,

frag number) < size cutoff*255:
16: slices = find objects(labels ==

frag number)[0]
17: thresholded copy[slices[0].start: sli-

ces[0].stop, slices[1].start: slices[1].stop] =
0

18:
19: # relabel fragments
20: labels, n fragments = measure-

ments.label(thresholded copy)Frontiers 2

Krosney et al.

Finally, we reduce extraneous fragments by fin-
ding any with an unreasonable distance to a plant in
the original image. To achieve this, the radius of the
plant in the image r(p) is estimated by calculating
the width of the bounding box from the original
metadata. Equivalently, the bounding box height
could be used to calculate the radius since the ori-
ginal bounding boxes are all square. All fragments
that satisfy Dp,f > r(p) · T1 are removed, where
T1 is a distance threshold multiplier that is typically
assigned the value T1 = 1.6. From the remaining
valid fragments, the one with the smallest Eucli-
dean distance is assigned to the plant. The output
of Figure 19 after the bounding box tightening
algorithm is given in Figure 20.

Figure 20. Indoor multi-plant image with the
improved bounding boxes shown in green. The
bounding boxes are significantly tighter than the
originals.

Frontiers 3

Krosney et al.

APPENDIX 2 ADDITIONAL
COLOR-CORRECTED COMPOSITE
TRANSLATION RESULTS

This section contains image translation results for
generators trained to translate color-corrected com-
posite images of canola, oat, and wheat. The
datasets used for generator training are similar to
the Color-Corrected Composites 1 dataset of Table
1. Twenty additional color-corrected composite pho-
tos of each plant from the same age range unseen
during the training process compose the distribution
V for qualitative evaluation of the models. Dataset
parameters for this section are listed in Table 4.

Dataset Name Nx Ny Species Age (days) Nbackgrounds Smin Smax Figure
Color-Corrected Composites 4 64 64 Canola 10-40 32 0.50 0.85 21
Color-Corrected Composites 5 64 64 Oat 0-365 32 0.50 0.85 22
Color-Corrected Composites 6 64 64 Wheat 0-365 32 0.50 0.85 23

Table 4. Parameters for each additional training
dataset.

Figure 21. Canola images sampled from the distri-
bution Y (1), images sampled from the distribution
X (2), translated images G(x) (3), images sampled
from the distribution V (4), and translated images
G(v) (5).

Figure 22. Oat images sampled from the distribu-
tion Y (1), images sampled from the distribution
X (2), translated images G(x) (3), images sampled
from the distribution V (4), and translated images
G(v) (5).

Figure 23. Wheat images sampled from the distri-
bution Y (1), images sampled from the distribution
X (2), translated images G(x) (3), images sampled
from the distribution V (4), and translated images
G(v) (5).

Frontiers 4

