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1 | INTRODUCTION

Nora J. Casson”

| Henry F. Wilson®

Abstract

Cold agricultural regions are getting warmer and experiencing shifts in precipita-
tion patterns, which affect hydrological transport of nutrients through reduced snow-
pack and higher annual proportions of summer rainfall. Previous work has demon-
strated that the timing of phosphorus (P) concentrations is regionally coherent in
streams of the northern Great Plains, suggesting a common climatic driver. There
has been less investigation into patterns of stream nitrogen (N), despite its impor-
tance for water quality. Using high-frequency water quality data collected over 6 yr
from three southern Manitoba agricultural streams, the goal of this research was to
investigate seasonal patterns in N and P concentrations and the resultant impacts
of these patterns on N/P stoichiometry. In the spring, high concentrations of inor-
ganic N were associated with snowmelt runoff, while summer N was dominated by
organic forms; inorganic N concentrations remained consistently low in the sum-
mer, suggesting increased biological N transformation and N removal. Relationships
between N concentration and discharge showed generally weak model fits (+* values
for significant relationships ranging from .33 to .48), and the strength and direction
of model fits differed among streams, seasons, and forms of N. Dissolved organic N
concentrations were strongly associated with dissolved organic carbon. Nitrogen-to-
phosphorus ratios varied among streams but were significantly lower during summer
storm events (p < .0001). These results suggest that climate-driven shifts in tempera-

ture and precipitation may negatively affect downstream water quality in this region.

et al.,, 2019a). In this region, agricultural productivity and
nutrient export tend to be limited by moisture and hydrolog-

The northern Great Plains is a cold region with widespread
agriculture, low relief topography, short growing seasons, and
a semi-arid to sub-humid climate (Baulch et al., 2019; Liu

Abbreviations: c-Q, concentration-discharge; DIN, dissolved inorganic
nitrogen; DOC, dissolved organic carbon; DON, dissolved organic nitrogen;
OR, Oak River; TDN, total dissolved nitrogen; TDP, total dissolved
phosphorus; TN, total nitrogen; TP, total phosphorus; WCE, Willow Creek
East; WCW, Willow Creek West.

ical connectivity (Baulch et al., 2019). The hydrology of this
region is dominated by cold region processes, and the spring
snowmelt accounts for a large proportion of water and nutrient
transport as snowmelt waters flow over frozen and imperme-
able soil (Corriveau et al., 2011; Costa et al., 2017; Pomeroy
etal., 2007). Nutrient loads in cold regions are also influenced
by local hydrology and weather conditions (Shrestha et al.,
2012; Costa et al., 2017), as well as soil properties and agri-
cultural practices (Baulch et al., 2019; Liu et al., 2019a).
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Annual maximum temperatures in a proximal Canadian
Prairie basin have increased by 1.2 °C from 1942 to 2014
(Dumanski et al., 2015), and annual mean temperatures in this
region are expected to increase 2 °C by 2050 (Toyri et al.,
2005). The rainfall fraction of precipitation has increased
from 68 to 78% from 1942 to 2014 in this region and is
predicted to gradually increase as temperatures rise (Duman-
ski et al., 2015). Increasing temperatures associated with cli-
mate change are also leading to an earlier snowmelt by 2 wk
(Dumanski et al., 2015). Summer and autumn precipitation
events have also become larger and more common in this
region (Spence et al., 2011; Shook & Pomeroy, 2012).

These climate-driven shifts in hydrology are overlain on a
landscape that has undergone substantial human modification,
including draining of natural wetlands to enable the devel-
opment of agriculture areas (Dahl & Allord, 1996). Much of
this region is naturally poorly drained, and large portions of
the landscape are designated as noncontributing, as they do
not contribute flow to the stream network in a typical year;
the proportion of noncontributing area varies among catch-
ments (Ali & English, 2019). Growing networks of anthro-
pogenic surface drainage have resulted in reduced water reten-
tion and increased hydrological connectivity, which leads to
more frequent floods and amplified flood volume and peak
discharge (Spence, 2007; Dumanski et al., 2015; Szeto et al.,
2015; Blais et al., 2016). Taken together, these anthropogenic
pressures have profound consequences for nutrient dynam-
ics and water quality of downstream aquatic systems (Baulch
etal., 2019; Wilson et al., 2019), and indeed, nutrient concen-
trations and nuisance algal blooms have been increasing in the
region (Schindler, 2012).

Because of the concerns about algal blooms, much of the
research in this region has focused on phosphorus (P) concen-
trations and loads (Ulrich et al., 2016). Although P removal
has been successful in improving water quality of numerous
lakes (Schindler et al, 2016), many anthropogenically affected
systems have not responded as well to P removal (Paerl et al.,
2016). Colimitation of productivity by both nitrogen (N) and
P is frequently observed in fluvial systems (Dodds & Smith,
2016; Paerl et al., 2016), and the ratio of N/P can affect algal
community composition and toxin production (Orihel et al.,
2012; Donald et al., 2013). Colimitation of N and P occurs
in fluvial systems when the N/P ratios lie between 20 and 50
(Guildford & Hecky, 2000). Furthermore, investigating N/P
ratios can reveal whether the response of these two nutrients
to a regional or local driver is similar or whether environmen-
tal changes may differentially affect the processes controlling
the export of each nutrient (Collins et al., 2017).

Investigations into hydrological controls on P behav-
ior in the northern Great Plains have demonstrated that
concentration-discharge (c-Q) relationships are complex with
low explanatory power (Ali et al., 2017; Casson et al., 2019).
Work from other intensively managed agricultural catchments

Core Ideas

e Stream nitrogen and phosphorus concentrations
peak with snowmelt.

* Potential for high concentrations of stream N is
lower in summer.

¢ Organic and inorganic forms of stream N have dif-
ferent patterns and drivers.

* Seasonal patterns of stream N and P differ, which
affects N/P ratios.

* High flow events drive N/P ratios down, sometimes
to the point of N limitation.

has suggested that large legacy sources of nutrients result in
chemostatic conditions (Basu et al., 2010; Thompson et al.,
2011). However, in the Canadian Prairies, soil sources of P
are heterogeneous (Wilson et al., 2016) and runoff genera-
tion mechanisms are complex due to the flat topography and
the large amount of depressional storage across this landscape
(Ali et al., 2017). As a result, stream nutrient concentrations
in this region can be highly variable through time.

Recent work on P dynamics demonstrated that concen-
trations are regionally coherent across southern Manitoba
agricultural streams, with a major peak of P concentration
around the time of snowmelt and a smaller concentration
peak in the summer (Casson et al., 2019). The timing of the
observed summer peaks of P concentrations were indepen-
dent of storms, suggesting riparian or in-stream processes may
drive summer dynamics. An analysis of an extreme rainfall-
runoff event revealed that large summer storms may result in
opposite trajectories of N and P export; total phosphorus (TP)
concentrations were as high during the event as were observed
during snowmelt, but the N/P ratio was substantially lower
(Wilson et al., 2019). These seasonal patterns were mediated
by land use in the catchment.

Land management and hydrological factors affect N/P
ratios in streams in the northern Great Plains. Factors such
as tillage practices (Tiessen et al., 2010; Baulch et al., 2019),
sewage discharge, fertilizer management (Rattan et al., 2017,
Liu et al., 2019b; Cormier et al., 2020), and extent of wetland
drainage (Wilson et al., 2019) drive differences in N and P
concentrations among watersheds. As well, antecedent con-
ditions have a major influence on interannual variability of
nutrient transport to streams (Macrae et al., 2010; McMillan
et al., 2018). The extent to which stream N and P respond
similarly or differently to hydrological, land use, or climatic
drivers is critical to understand in order to project how water
quality may shift in the future.

The objective of this study was to examine the influence
of seasonal patterns in N and P concentrations on N/P
stoichiometry in agricultural streams of the northern Great

85UB0|7 SUOWILIOD BAITa1D) 3ot dde ayy Aq pausenob ae ssppie YO ‘88N JO S8jni 10} ArIq1T 8UIIUO AB|IAA UO (SUORIPUOD-PUR-SWLBI WD A8 | IMAeIq 1 U1 UO//SANY) SUONIPUOD pue SWB | 38U 88S *[£202/L0/TT] uo AriqiTauluo A1 ‘Ariqi Bediuuim JO AisAIUN Ad ¥EZ0Z 28 (/200T 0T/10p/w00 A8 | Afelq1jpuljuo ssesde//sdny wouy pepeojumod ‘€ ‘TZ0Z ‘LESZLEST



FRIESEN-HUGHES ET AL.

Journal of Environmental Quality 655

| La!(e
Oak River Manitoba
Willow Creek
West’ p
| | Willow Creek
East
p\ss\d\bd\ne River
0 10 20 40 . .
s Kilometers

FIGURE 1

Plains. We used stream chemistry samples and discharge
data from three streams monitored over 6 yr to address three
objectives: (a) to compare seasonal patterns of stream N
concentrations among organic and inorganic forms; (b) to
assess differences in stream N and P concentrations across
streams and seasons; and (c) to investigate the implications of
contrasting seasonal drivers of stream N and P concentrations
on N/P stoichiometry.

2 | MATERIALS AND METHODS

2.1 | Study area and catchment
characteristics

This study examined three catchments located in the Assini-
boine River watershed in southwestern Manitoba, Canada,
north of Brandon (Figure 1). These catchments were selected
on the basis of data availability and catchment characteris-
tics. The climate in this region is continental and associ-
ated with a wide annual temperature range (from monthly
mean temperatures in January of —16.6 to 18.5 °C in
July); precipitation during open-water season, which spanned
April-October at these sites, averages 379 mm annually,
while the nongrowing season (November—March) averages
96 mm (climate data are based on records for “BRAN-
DON A” from 1981 to 2010, which were retrieved from
https://climate.weather.gc.ca). These catchments are located
within the Aspen Parkland ecoregion, which has experienced
a gradual shift from a landscape dominated by grasslands,
forests, and wetlands to primarily agricultural land (Smith

Three study catchments in southwestern Manitoba. Data obtained from Agriculture and Agri-Food Canada

et al., 2001; Casson et al., 2019) (Table 1). During the ref-
erence period used in this paper (2013-2018), canola (Bras-
sica napus L. var. napus), wheat (Triticum aestivum L.), and
soybean [Glycine max (L.) Merr.] were the most commonly
grown crops in Manitoba (Statistics Canada 2021a). In 2016,
in Agricultural Region 2, Manitoba (where our study catch-
ments our located), the most common tillage practice was
conservation tillage (41.7%), followed by zero tillage (32.8%)
and conventional tillage (25.5%) (Statistics Canada 2021b).
The predominant soils in these catchments are Black Cher-
nozems, formed on kettled or gently undulating calcareous
glacial till (Kodama et al., 1993; Casson et al., 2019). This
soil type is associated with high proportions of organic mate-
rial and is widespread across the Canadian Prairies. The catch-
ments are located within the Pothole Till class of the Prairie
Pothole watershed classification, a category that is associated
with glacial till, hummocky landforms, high wetland density,
and a reduced areal water extent contained within the largest
wetland when compared to other categories (Wolfe et al.,
2019).

The catchments vary significantly in size, with Oak River
(OR) being the largest (2,883 km?), followed by Willow Creek
West (WCW) (1,031 km?) and Willow Creek East (WCE)
(157 km?). Oak River has the highest wetland proportion
(10.4%), while WCE and WCW have lower proportions of
wetland coverage (WCE = 1.7%, WCW = 3.5%) (Table 1).
Wetlands also make up a significantly higher proportion of
riparian area in OR (14.0%) than they do in WCE (1.3%)
and WCW (2.5%). The proportion of streamline open water
is also significantly higher in OR (9.8%) than in WCE (2.6%)
and WCW (2.2%). Streamline open water is the proportion
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TABLE 1 Catchment characteristics. Data obtained from Agriculture and Agri-Food Canada

Characteristic Oak River
Catchment size, km? 2,883.3
Effective drainage area, % 23.7
Annual cropland, % 571
Forest, % 5.3
Wetland, % 10.4
Riparian cropland, % 45.7
Riparian forest, % 28.7
Riparian wetland, % 14.0
Riparian grassland, % 7.6
Streamline open water, % 9.8

of a line that follows the center of the stream that intersects
with open water. Effective drainage area was lower in OR
(23.7%) than in WCW (65.4%) and WCE (98.4%). Effective
drainage area is defined as the area of the catchment that is
expected to contribute flow to the stream during an event with
a return period of 2 yr (Godwin & Martin, 1975). The dif-
ferences among catchments in wetland proportion, cropland
proportion, size, and effective drainage area reflect the typ-
ical range in this region (Casson et al., 2019; Wilson et al.,
2019). The catchments were similar in other characteristics
such as riparian cropland proportion and riparian grassland
proportion and somewhat similar in riparian forest propor-
tion (Table 1). Riparian proportions refer to the proportion
of riparian area within a catchment that is composed of that
ecosystem type. These proportions were determined by creat-
ing a 60-m buffer around the provincial drain map streamline,
all surface waters that connect to the main streamline, and the
outside of all lakes and ponds that intersect the streamlines.

2.2 | Water chemistry

Streams were sampled on a daily to weekly basis throughout
the 2013-2018 growing seasons (roughly March—November)
for total nitrogen (TN), total dissolved nitrogen (TDN), NO; ™,
NH,*, dissolved organic carbon (DOC), total phosphorus
(TP), total dissolved phosphorus (TDP), and specific ultra-
violet absorbance. Using twice-rinsed polycarbonate bottles,
water samples were taken from well-mixed areas of the
streams and stored frozen in a cooler before analysis (Cas-
son et al., 2019). A flow analyzer with a NO;~ reducing
coil was used to colorimetrically determine NH,* and NO5~
(as NO3;~ + NO,") concentrations. Total dissolved N and
DOC concentrations were determined through the combus-
tion method using a Shimadzu TOC-VCSn analyzer. Particu-
late N was determined by analyzing a mass of filtered mate-
rial using a Thermo Scientific Flash 2000 CHNS/O elemental

Willow Creek Willow Creek
East West
156.8 1,030.7
98.4 65.4
75.0 72.8
1.9 4.0

1.7 35
48.8 41.7
324 39.2
1.3 2.5

9.6 9.0

2.6 22

analyzer. Total N is the sum of TDN and particulate N. Total
P and TDP concentration were determined through sulfuric
acid/persulfate digestions and colorimetry using the ascor-
bic acid method (Wilson et al., 2019). The N/P ratios were
calculated using TDN and TDP. Dissolved inorganic nitro-
gen (DIN) describes the combined concentration of NO5~
and NH, *. Dissolved organic nitrogen (DON) was calculated
as TDN — DIN. Total dissolved N and P are strongly corre-
lated with TN and TP, respectively, and the dissolved fraction
makes up a high proportion of the total nutrient concentration
in these regions (McCullough et al., 2012; Liu et al., 2013).
The relationship between the total and dissolved fractions
for both N and P is shown in Supplemental Figures S1 and
S2.

Discharge data were acquired from the Water Survey of
Canada hydrometric database (https://wateroffice.ec.gc.ca/)
for OR (Wilson et al., 2019). For WCE and WCW, flow
was measured by Agriculture and Agri-Food Canada and a
stage-rating curve was generated using manual streamflow
measurements in combination with depth measurements from
pressure transducers (Onset HOBO U20-001-04) that logged
continuously (Wilson et al., 2019). Streams were not mon-
itored in the winter due to lack of access. Seasonal sepa-
rations (spring, summer) and storm events were determined
by visual inspection of hydrographs, nutrient concentrations,
and manual hydrograph separation (Linsley Jr et al., 1975).
One extreme rainfall-runoff event in the 2014 growing season
(called “2014 Storm™) was highlighted as a separate condi-
tion as it was unique in its magnitude and its effect on nutrient
dynamics in all three streams (Wilson et al., 2019).

2.3 | Statistical analyses
To understand the characteristics of nutrient flowpaths in

these catchments, threshold models were fit to c-Q data for
each stream, following the method used by Ali et al. (2017).
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The threshold models used the following equation:

When Q < ThresQ, ¢ = Cg
Otherwise : ¢ = C, + C;

where ¢ = nutrient concentration, Q = discharge,
ThresQ = breakpoint, Cg = ¢ at baseflow, and Cg +
C, = solute concentration when both baseflow and runoff
contribute to stream flow (Ali et al., 2017; Casson et al.,
2019). ThresQ was identified from fitting the segmented
package for the threshold model (Muggeo, 2003; Muggeo,
2008; Muggeo, 2016; Muggeo, 2017). The Davies test was
used to test if the breakpoint of the threshold model was
significant (i.e., if there was nonzero difference in slope
between the two segments) (Davies, 2002).

All models were calculated with all years of data available
(2013-2018). The c-Q relationships were calculated over the
entire growing season as well as individually for spring and
summer. In accordance with the study by Ali et al. (2017), >
values above .2, .4, .6, and .8 were described as fair, reason-
able, good, and very good model fits, respectively. We used a
pairwise Wilcoxon rank sum test to calculate pairwise statis-
tical comparisons between seasons and stormflow conditions
of N/P ratios. All statistical analyses were done using R (R
Core Team, 2020).

3 | RESULTS

3.1 | Seasonal patterns of discharge

At all three streams, seasonal patterns of discharge were simi-
lar. The spring snowmelt was usually the time when discharge
was highest, with lower, secondary peaks of discharge occur-
ring in the summer (Figure 2). There were exceptions, such
as in 2013 when the secondary discharge peak was close in
magnitude to the spring snowmelt peak in all three streams.
In 2014, there was an extreme rainfall-runoff event at all
three streams, attributed to a heavy rainstorm (124.4 mm
in 3 d [data retrieved from the “BRANDON A” historical
weather station data from https://climate.weather.gc.ca]) in
combination with very wet antecedent conditions (Ahmari
etal.,2016; Wilson etal., 2019). Based on intensity—duration—
frequency curves for the Brandon A weather station, a 100-
yr event has a magnitude of 109 mm over 24 h, while a 25-
yr event has a magnitude of 84 mm over 24 h (Schardong
et al., 2020). Pre-snowmelt precipitation (1 November to 30
April) ranged from 145 to 200 mm, and the total rainfall
in May and June that contributed to the extreme rainfall-
runoff event ranged from 249 to 268 mm at these sites (Wil-
son et al., 2019). Water yield from this event was simi-
lar in magnitude to the snowmelt of that year (snowmelt
water yield ranging from 40 to 64 mm; extreme rainfall-
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runoff water yield ranging from 36 to 49 mm; Wilson et al.,
2019).

3.2 | Seasonal patterns of stream nutrients
There were strong seasonal patterns of N concentration across
all streams. For all forms of N, concentrations were highest at
the onset of spring snowmelt and declined as the snowmelt
progressed (Figure 3). Patterns of N concentration varied sig-
nificantly between organic and inorganic forms. In all three
streams, there were no correlations between DIN and DON
when we looked at the full growing season, spring, or the sum-
mer. The DIN concentrations were consistently low through-
out the summer, while DON concentrations typically rose to
a secondary peak after dropping to the lowest point follow-
ing snowmelt. Total dissolved N and TDP were fairly well
correlated in all three streams across the entire growing sea-
son (2 range = .38—-.52, p < .0001). Dissolved organic N and
DOC concentrations were fairly well correlated in all three
streams across the entire growing season (12 range = .34—.71,
p < .0001) and very well correlated during the summer (°
range = .80-.86, p < .0001).

3.3 | Concentration-discharge relationships
Throughout the full growing season, both TDN and TDP were
fairly to reasonably well fit by threshold models where con-
centrations increased after the breakpoint, but only in WCE
(r* = 41, p < .001 for both TDN and TDP) and WCW
(r* = .33, p < .001 for TDN; 7> = .44; p < .001 for TDP)
(Figure 4; Table 2). Dissolved inorganic N was fairly to rea-
sonably well fit by threshold models where concentrations
increased after the breakpoint, but only in WCE and WCW
(r* = .40 and .36, respectively, p < .001 at both streams) (Fig-
ure 4; Table 2). DON and DOC were reasonably well fit by
threshold models, but only in OR (¥2 = .44 and .48, respec-
tively, p < .001 for both DON and DOC) (Figure 4; Table 2).
The slopes of these model fits were negative after the break-
point, indicating hydrological dilution at high flow (Figure 4;
Table 2) (Moatar et al., 2017).

3.4 | Seasonal patterns of stream N/P
stoichiometry

There were significant differences in N/P ratios among sea-
sons (Figure 5). In OR, N/P was not significantly differ-
ent between spring and summer baseflow, N/P in summer
stormflow was significantly lower than both spring and sum-
mer baseflow (p < .001), and the N/P of the extreme 2014
storm event was significantly lower than summer stormflow
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FIGURE 2

Time series of discharge (log10 transformed) starting at the first day of the spring snowmelt. Each column of plots corresponds to a

different stream, and each row corresponds to a different year. OR = Oak River; WCE = Willow Creek East, WCW = Willow Creek West. Colored
by condition (season or stormflow). A few data points from the midsummer of 2017 in WCW are not displayed as the discharge values were

extremely low. The stream was almost certainly not flowing during this period

(p < .005) (Figure 5; Supplemental Table S2). In WCE, N/P
was highest during summer baseflow, there was no signif-
icant difference between N/P of spring and summer storm-
flow (p > .05), and the extreme 2014 storm was significantly
lower than summer stormflow (p < .001) (Figure 5; Supple-
mental Table S2). In WCW, N/P was also highest during the
summer baseflow; however N/P in spring was significantly
lower than in summer stormflow (p < .001) (Figure 5; Sup-
plemental Table S2). The N/P in the extreme storm event was
also lower than the summer stormflow (p < .001) (Figure 5;
Supplemental Table S2). The impact of storm events on N/P
ratios was strongly dependent on when storm events occurred;
storm events that directly followed snowmelt typically did not
depress N/P ratios, whereas midsummer events almost always
resulted in the lowest N/P ratios of the year.

4 | DISCUSSION

Nitrogen concentrations in these three streams showed strong,
consistent seasonal patterns. There were high concentrations
of all forms of N associated with spring snowmelt, and these
concentrations declined sharply as spring progressed. The
summer months were characterized by either low N concen-
trations relative to the spring snowmelt concentration peak—
which was seen in both forms of DIN (NO;~ and NH,*)—or
a gradual rise to a smaller midsummer concentration peak,
which was seen in DON. The c-Q threshold model fits for
all analytes during the full growing season were significant
exclusively in OR or exclusively in WCE and WCW. This is
likely a reflection of catchment characteristics. Willow Creek
East and WCW have more similar characteristics to each other

85UB0|7 SUOWILIOD BAITa1D) 3ot dde ayy Aq pausenob ae ssppie YO ‘88N JO S8jni 10} ArIq1T 8UIIUO AB|IAA UO (SUORIPUOD-PUR-SWLBI WD A8 | IMAeIq 1 U1 UO//SANY) SUONIPUOD pue SWB | 38U 88S *[£202/L0/TT] uo AriqiTauluo A1 ‘Ariqi Bediuuim JO AisAIUN Ad ¥EZ0Z 28 (/200T 0T/10p/w00 A8 | Afelq1jpuljuo ssesde//sdny wouy pepeojumod ‘€ ‘TZ0Z ‘LESZLEST



FRIESEN-HUGHES ET AL.

@ Spring ® Summer/Baseflow @

OR

WCE

WCW

Journal of Environmental Quality 659

Summer / Stormflow @  Summer / Extreme Storm

°
.
Dol ol - © o sesse

dat

SBPRRGIOT I TG S

NaL

-1

95,0 o sl a0 > S@Sve o

NId

Concentration (mg L)

g S B D g ®
2 R S

Noa

301

201 “;ﬁgoo %o 20 '<

10

20da

0 100 200 0 100

200 0 100 200

Days Since Snowmelt
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stream, and each row corresponds to a different analyte. OR = Oak River, WCE = Willow Creek East, WCW = Willow Creek West. Colored by
condition (season or stormflow). Data for all years (2013-2018) are superimposed to illustrate seasonal patterns

than to OR. Both WCE and WCW have similar areal propor-
tions of annual cropland, wetland, and streamline open water,
and they are closer in proximity. While they also differ in
many categories such as effective drainage area, catchment
size, and areal proportions of forest and riparian forest, they
had similar c-Q threhold model fits for all analytes.

As observed in Casson et al. (2019), there were high con-
centrations of TDP associated with spring snowmelt, and c-
Q threshold model fits were either fair (WCW and WCE)
or poor (OR) (Table 2). However, there were high midsum-
mer TDP concentrations associated with the 2014 extreme
rainfall-runoff event (Figure 2, Figure 3) (Wilson et al., 2019).
The response of TDP across catchments to this extreme rain-
fall event is contrary to timing and magnitude of secondary
concentration peaks observed in most forms of N, espe-

cially inorganic forms, which did not respond to this event
to the same degree (Figure 3). The contrast between N and
P dynamics led to significant differences among seasons and
hydrological conditions. The N/P ratio in streams was signif-
icantly higher during summer baseflow compared with sum-
mer stormflow at all catchments, and this difference is even
greater when comparing N/P ratios during the 2014 extreme
event.

4.1 | Controls on N concentrations in spring
Spring patterns of N concentrations in these streams were

strongly driven by snowmelt runoff processes. These patterns
are consistent with other agricultural streams in this region,
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inorganic N (DIN), dissolved organic N (DON), and dissolved organic C (DOC). Segmented lines illustrate significant threshold relationships. Each

column of plots corresponds to a different stream, and each row corresponds to a different analyte. OR = Oak River, WCE = Willow Creek East,

WCW = Willow Creek West. Colored by condition (season or stormflow). Data for all years (2013-2018) are superimposed to illustrate seasonal

patterns

as both TN and TP typically respond strongly to snowmelt
discharge runoff (Corriveau et al., 2013; Rattan et al., 2017;
Casson et al., 2019). Hydrological connection to upland and
cropland areas is highest in the early spring. Snowmelt runoff
over frozen soils drives much of the nutrient transport in this
region, and the snowmelt rate (Rattan et al., 2017), snowmelt
volume (Schneider et al., 2019), and accumulation of chem-
icals in the snowpack over the winter months (Costa et al.,
2018) contribute significantly to this annual nutrient load.
However, discharge by itself was not a strong predictor of
N concentrations in the spring (Supplemental Table S1).
This result is consistent with research demonstrating that the
sources of DIN shift as the melt progresses, and the peak
in DIN concentration is not necessarily coincident with the

peak in discharge (Brunet & Westbrook, 2012; Costa et al.,
2017).

Catchment characteristics may have had an effect on peak
spring concentrations of both TDN and TDP, which were
often significantly higher than OR in WCE and WCW.
Peak spring TDN concentrations were 89.4 and 75.3%
higher than OR in WCE and WCW, respectively. Peak
TDP concentrations were 17.42 and 149.2% higher than
OR in WCE and WCW, respectively. This is consistent
with findings of Wilson et al. (2019), where flow-weighted
mean concentrations of TN and TP were positively asso-
ciated with cropland and negatively associated with wet-
lands. Both WCE and WCW have higher areal proportions
of cropland and lower areal proportions of wetland and
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2000). Letters represent statistically significant differences among conditions (p < .05), which were determined from pairwise Wilcoxon rank sum

tests (shown in Supplemental Table S2). Each plot corresponds to one of three study streams (a = Oak River, b = Willow Creek East, ¢ = Willow

Creek West)

riparian forest. Higher areal proportion of cropland may
be associated with higher peak TDN and TDP concentra-
tions due to greater inputs of fertilizer (Carpenter et al.,
1998). Higher peak TDN and TDP concentrations may occur
with lower areal proportions of wetland and riparian forest
because nutrient retention is reduced (Satchithanantham et al.,
2019).

During the spring snowmelt, DIN concentrations were high
and comprised a large proportion of TDN (the mean of the
proportion of TDN that is DIN during spring was 38.5% in
OR, 67.6% in WCE, and 66.3% in WCW). Nitrate is highly
soluble in water and resides primarily in soil pore water which
makes it easily transported with runoff (Costa et al., 2017;
Snider et al., 2017). Despite its high retention on negatively
charged soil particles, snowpack NH,* is easily transported
from the landscape with spring snowmelt runoff (Stottlemyer
& Toczydlowski, 1996; Costa et al., 2020). Biological pro-
cesses such as mineralization, nitrification, and denitrifica-
tion have also been shown to occur at potentially significant
rates in frozen agricultural soils, and these processes could
have increased snowmelt export of inorganic N from the soils
(Clark et al., 2009). Even so, the extent to which these biolog-
ical N transformations occur during the winter in this region
is perhaps quite low, given the degree of freezing in soils
(Costa et al., 2017). The spring snowmelt was also associ-
ated with high DON concentrations. While the predominant
form of N in snowpacks is usually inorganic, organic N can be
present due to leaching from vegetation and surficial soil lay-
ers (Elliot, 2013; Costa et al., 2017). However, unlike NO5~
and NH,*, there were also significant levels of organic N
present during the summer (Figure 3).

4.2 | Controls on N concentrations in
summer

Summer patterns of N differed between organic and inorganic
forms. Throughout the summer, DIN remained at consistently
low levels (mean = 0.12 mg L™!, SD = 0.38 mg L), and
DON fluctuated (mean = 1.16 mg L™!, SD = 0.32 mg L™1).
This fluctuation was most pronounced in OR, where both
summer DON and DOC levels approached or exceeded spring
snowmelt levels (maximum summer DON and DOC values
were 88.8 and 103.5% of the maximum spring DON and DOC
values, respectively) (Figure 3). The c-Q threshold model fits
for both DON and DOC in OR were independent of discharge
at low flows and negative at high flows, following the “flat-
down” pattern characterized by Moatar et al. (2017), with the
breakpoints close to the median flow values (Table 2); this
suggests a dilution of pools of DON and DOC with larger
fluxes of water (Godsey et al., 2009).

The large catchment size, high proportion of wetlands,
large amounts of open water, and low proportion of effective
drainage area in OR may explain why DON and DOC were
source-limited, as well as why concentrations of all other
nutrients were weakly predicted by discharge in this stream
(Table 1; Supplemental Table S1; Basu et al., 2011). These
factors tend to hinder nutrient transport and can indicate
that stream concentrations of these nutrients depend more
on in-stream processes (Basu et al., 2011). The negative
c-Q threshold model fits may suggest that the depressional
storage in the OR catchment was such that the rainfall-runoff
events did not connect the streams to wetland sources of DOC
and DON enough to affect stream nutrient concentrations in
a meaningful way.
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TABLE 2
growing season. Only significant relationships are shown. The reported

Concentration-discharge relationship data for the entire

p values were calculated using the Davies test, which tests for a
non-zero difference-in-slope parameter of a threshold relationship

Median
Analyte r? P ThresQ* Slope® discharge
TDP
OR —1.60
WCE 41 <.001 —2.87 0.35 -2.62
WCW 44 <.001 -2.03 0.45 -2.60
TDN
OR

WCE 41 <.001 -1.37 0.37
WCW 33 <.001 -1.83 0.23
DIN
OR
WCE 40 <.001 —1.48 1.09
WCW .36 <.001 —1.76 0.94
DON
OR 44 <.001 —2.00 —0.14
WCE
WCW
DOC
OR 48 <.001 —-1.91 —0.12
WCE
WCW
Notes. DIN, dissolved inorganic N; DOC, dissolved organic C; DON, dissolved
organic N; OR, Oak River; TDN, total dissolved N; TDP, total dissolved P; WCE,
Willow Creek East; WCW, Willow Creek West.

2ThresQ = breakpoint. Slope = the slope of the threshold model following the
breakpoint.

Given the lack of relationship between DON and discharge
in WCE and WCW, it seems likely that in-stream or near-
stream processes are driving these patterns. During these peri-
ods of low flow and high temperatures, organic matter may
accumulate in streams because of primary production (Web-
ster & Meyer, 1997). This hypothesis is further supported
by the pattern of low absorbance values during the summer
(Wilson, unpublished data), suggesting that the organic mat-
ter in the stream is less terrestrially derived and therefore
more likely to have been produced in-stream (Vidon et al.,
2008). The strong relationship between DOC and DON sug-
gests that the N dynamics during this period are tightly cou-
pled to organic matter dynamics.

Concentrations of DIN were consistently low through-
out the summer and showed very little if any response to
storm events (Figure 3). In some aquatic systems where C is
the limiting nutrient for microbial activity, addition of DOC
can prompt increases in microbial activity, which leads to a
quicker uptake time and reductions to stream NO;~ and possi-

bly NH,* concentrations (Bernhardt & Likens, 2002). Sum-
mer periods of low flow also favor NO;™ uptake due to the
increased water residence time and ratio between streambed
surface area and water volume, both of which accelerate
stream microbial uptake and NO;~ removal in hyporheic
and riparian zones by denitrifying microorganisms (Peterson
et al., 2001; Mulholland et al., 2008; Zarnetske et al., 2012;
Moatar et al., 2017).

4.3 | N/P ratios

The N/P ratio in surface waters is a critical determinant of
water quality, as it can drive algal community composition
(Schindler et al., 2016) and toxin production (Orihel et al.,
2012). The streams in this region drain into Lake Winnipeg,
which is affected by freshwater eutrophication (Schindler,
2012). These results provide clear evidence that summer high-
flow events drive N/P ratios down, in many cases below the
critical threshold of 20, when N becomes limiting to algal
growth (Guildford & Hecky, 2000). Other work assessing
drivers of N/P ratios in agricultural streams has also observed
greater transport of P during rain events compared with N
(Green et al., 2007; Green & Wang, 2008; Green & Fin-
lay, 2010; Rattan & Chambers, 2017), consistent with our
finding that N/P ratios were significantly lower during storm
events compared with summer baseflow. In this region, P
transport from low-lying soils and riparian buffers during
storms is mediated by abiotic adsorption—desorption and is
strongly related to soil test P concentrations (Wilson et al.,
2016; Satchithanantham et al., 2019). Conversely, warm, wet
conditions may promote NO;~ removal via denitrification
(Satchithanantham et al., 2019; Baulch et al., 2019).

The N/P ratios responded more strongly to high-flow con-
ditions in streams from well-drained catchments (WCE and
WCW) than a poorly drained catchment (OR), which may be
due to differences in hydrological connectivity (Rose et al.,
2018; Kincaid et al., 2020) that arise from the differences
among catchment characteristics such as effective drainage
area, proportion of wetland, and catchment size. Stronger
hydrological connectivity coupled with the high proportion of
conservation tillage practiced in this region (41.7%) (Statistics
Canada, 2021b) may explain the lowered N/P ratios observed
in WCE and WCW during the spring (Tiessen et al., 2010).

Larger summer rainfall events tend to drive N/P ratios down
(Correll et al., 1999; Green et al., 2007; Green & Finlay, 2010;
Kincaid et al., 2020), which is consistent with our finding that
the extreme rainfall-runoff event of 2014 had the lowest N/P
ratios in each stream. In a detailed study of the 2014 extreme
rainfall event, Wilson et al. (2019) attribute low N/P ratios
(mean = 7.1, SD = 2.1) to the efficient transport of P but
not N from the watershed to the stream network via surface
drainage ditches. Prior to this extreme event, the landscape
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was saturated, so disproportionate transport of P via drainage
ditches was perhaps enhanced even relative to the large size
of this event. By contextualizing this event with additional
years of data, we can see that although other summer storms
exhibit depressions in N/P ratios (mean = 29.6, SD = 27.7),
the N/P ratios associated with this extreme event were signif-
icantly lower in all streams (mean = 7.1, SD = 2.1). The data
resolution in the present study did not allow us to assess the
role of antecedent moisture in driving N/P ratios, and so it
is difficult to disentangle whether the differences are due to
the size of the extreme event or due to the conditions leading
up to the event. Given the trends toward more frequent and
intense summer storms (Shook & Pomeroy, 2012; Dumanski
et al., 2015), there is an urgent need to understand how sum-
mer events affect stream N and P dynamics.

4.4 | Implications under a changing climate
Climate-induced changes to hydrology on the Canadian
Prairies will have important implications for nutrient trans-
port. Higher proportions of precipitation falling as rain,
smaller snowpacks, and early snowmelts will affect the tim-
ing, frequency, and magnitude of runoff (Shook & Pomeroy,
2012; Dumanski et al., 2015). This will have implications
for seasonal patterns of hydrological connectivity, which is
heavily affected by fill-and-spill mechanisms in catchments
with large fractions of noncontributing area due to low topog-
raphy, potholes, and wetlands (Coles & McDonnell, 2018;
Wolfe et al., 2019). Increased rainfall and changes to hydrol-
ogy may significantly alter the spatial, temporal, and com-
positional variability of N and P concentrations in north-
ern Great Plains agricultural streams (Shook & Pomeroy,
2012; Dumanski et al., 2015; Rattan et al., 2019). Reduc-
tions to snowpack volume and more frequent midsummer
extreme rainfall events should also shift the timing of nutrient
loads away from the spring and perhaps toward the summer
(Spence et al., 2011; Dumanski et al., 2015). Since midsum-
mer N and P transport appears to respond to different drivers
in this region, climate change may also affect N/P ratios
(Wilson et al., 2019) and thus adversely affect downstream
water quality (Paerl et al., 2016). Understanding how climate
change is affecting N transport in cold agricultural catch-
ments and developing and refining regional-scale models
based on more detailed local conditions will support informed
landscape management decisions in this region, where
water quality is vulnerable to human activities across the
landscape.
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