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Hyperspectral imaging (HSI) is a non-destructive and contactless technology that provides valuable information 
about the structure and composition of an object. It has the ability to capture detailed information about 
the chemical and physical properties of agricultural crops. Due to its wide spectral range, compared with 
multispectral- or RGB-based imaging methods, HSI can be a more effective tool for monitoring crop health 
and productivity. With the advent of this imaging tool in agrotechnology, researchers can more accurately 
address issues related to the detection of diseased and defective crops in the agriculture industry. This allows 
to implement the most suitable and accurate farming solutions, such as irrigation and fertilization, before crops 
enter a damaged and difficult-to-recover phase of growth in the field. While HSI provides valuable insights 
into the object under investigation, the limited number of HSI datasets for crop evaluation presently poses a 
bottleneck. Dealing with the curse of dimensionality presents another challenge due to the abundance of spectral 
and spatial information in each hyperspectral cube. State-of-the-art methods based on 1D and 2D convolutional 
neural networks (CNNs) struggle to efficiently extract spectral and spatial information. On the other hand, 
3D-CNN-based models have shown significant promise in achieving better classification and detection results 
by leveraging spectral and spatial features simultaneously. Despite the apparent benefits of 3D-CNN-based 
models, their usage for classification purposes in this area of research has remained limited. This paper seeks 
to address this gap by reviewing 3D-CNN-based architectures and the typical deep learning pipeline, including 
preprocessing and visualization of results, for the classification of hyperspectral images of diseased and defective 
crops. Furthermore, we discuss open research areas and challenges when utilizing 3D-CNNs with HSI data.
1. Introduction

Plant diseases pose significant threats to global food production, 
with potential yield losses of up to 30% and substantial economic 
impact [56]. This can have a devastating impact on farmers and com-

munities, particularly in low-income countries where access to food is 
already challenging. Precision agriculture and hyperspectral imaging 
(HSI) offer promising solutions for preventing crop damage and losses, 
ultimately contributing to efforts to promote sustainability and reduce 
the impact of diseases on food production.

HSI, also referred to as imaging spectrometry, combines two dis-

tinct technologies, imaging and spectroscopy, to provide both spatial 
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and spectral information, simultaneously. Spectral information can pro-

vide rich information about biochemical and biophysical attributes of 
the agricultural crops. This is due to the higher spectral resolution of 
hyperspectral sensors compared to multispectral and RGB ones. As a re-

sult, this feature can lead to better discrimination of objects of similar 
colors, higher accuracy in complex classifications, and the ability to pre-

dict chemical composition and provide information about the interior 
of an object [67].

However, the interpretation of spectral data can be complex, espe-

cially when analyzing and comparing multiple samples over extended 
periods. One approach to simplify spectral analysis is the usage of spec-

tral indices. Spectral indices are mathematical expressions that combine 
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Fig. 1. The hyperspectral cube (adapted from Tarabalka et al. [74] with modifi-

cation). It is a three-dimensional array where each pixel represents a spectrum 
containing a range of wavelengths. This spectrum can act as a fingerprint and 
provides information about biophysical and biochemical characteristics of the 
imaged object.

several spectral bands into a single value, providing an easier represen-

tation of the data. For example, the Normalized Difference Vegetation 
Index (NDVI) computes the ratio between Near Infrared (NIR) and Red 
(R) bands of hyperspectral channels as follows:

NDVI = NIR−R

NIR+R
(1)

With the help of spectral indices, one can effectively identify trends and 
changes in the data without requiring an in-depth comprehension of the 
underlying scientific principles governing spectral data, thus enabling a 
simpler data analysis, enhancement of features, standardization, com-

parability, and calibration of data.

In the agricultural industry, two common spectral indices are the 
already mentioned NDVI and the Green Chlorophyll Index (GCI). The 
former is used to monitor vegetation growth and health and the lat-

ter quantifies the amount of chlorophyll in plants. Further indices have 
been defined, usually in the context of remote sensing, to support re-

search for example on agriculture, soil, vegetation, water and forestry. A 
comprehensive database of spectral indices that is searchable by appli-

cation area and hyperspectral sensor is provided in Henrich et al. [24].

From a data-perspective, a hyperspectral image is a stack of images, 
known as a hyperspectral cube or a data cube. Each image of this cube 
represents the response of the imager to one of the distinct hyperspec-

tral channels [5]. This is illustrated in Fig. 1. It shows a 3D data cube 
P with dimensions 𝑀 ×𝑁 × 𝜆, where 𝑀 and 𝑁 represent the axes of 
spatial information and 𝜆 represents the spectral dimension [74]. In the 
hyperspectral cube, each pixel, given by its spatial coordinates, is a vec-

tor of length 𝜆 that indicates the reflected radiation of a specific part of 
the object.

The high-dimensionality of this data cube poses a challenge to tra-

ditional machine learning approaches, resulting in reduced accuracy 
due to their inability to extract complex features. Moreover, the per-

formance of these approaches heavily depends on manual feature en-

gineering. Convolutional Neural Networks (CNN) have been proven to 
achieve high classification accuracies in image classification tasks and 
to work well with the high-dimensionality of HSI data.

In this paper, we present a comprehensive review of 3D-CNN-based 
models utilized in the classification of non-UAV-based hyperspectral im-

ages of diseased and defective crops. This review is intended to assist 
computer vision experts and agriculture-domain researchers seeking to 
address HSI classification tasks for crops under stress.

The paper is organized as follows. In the following Section, we out-

line the investigation protocol used in this review. In Section 3, we 
briefly describe the structure of CNNs and their most important con-

cepts. Following the typical data pipeline associated with CNNs, Sec-
2

tions 4 to 7 review data preprocessing, band and feature selection, 
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network architecture design, and data visualization. This provides a 
convenient overview of its individual steps for plant classification prob-

lems using 3D-CNNs. Finally, Section 8 highlights the research gaps 
and limitations associated with the application of 3D-CNNs for HSI data 
classification.

2. Search methodology

A systematic search was conducted by accessing scholarly publica-

tions through Google Scholar search engine. To optimize the search 
results, specific keywords were employed in the advanced search sec-

tion, resulting in a refined list of articles. The selected search terms were 
different combinations of “hyperspectral”, “disease”, “detection”, “iden-

tification”, “diagnosis”, “plant”, “crop”, “stress”, “3D CNN”, “3 dimen-

sional CNN”, “three dimensional CNN”, utilizing the Boolean operators, 
AND and OR. Around 2,000 records were investigated, however, to en-

sure the relevance of the articles, the abstracts of the retrieved papers 
were thoroughly assessed to confirm coherence with the title of this re-

search. Moreover, screening criteria were implemented, including the 
removal of non-English papers, to ensure an accessible and high-quality 
selection of articles. The results of this comprehensive study are pro-

vided in Table 1 and Table 2 (see Section 6) and contain papers from 
2015 up to February of 2023.

This review examines various applications of 3D-CNN-based mod-

els in detecting and classifying diseases in agricultural crops, includ-

ing charcoal rot in soybeans [45], mold in peanuts and strawberries 
[42,33], bacterial leaf blight (BLB) in rice [10], grapevine vein-clearing 
virus (GVCV) in grapevines [47], and potato late blight (PLB) in pota-

toes [51]. Moreover, the review explores the use of 3D-CNN-based 
architectures for identifying specific defects in crops, such as decay in 
blueberries [52], bruise and brown spots in fruits [50,28], heat stress in 
rice [19], as well as black, fermented, shell, and broken coffee defects in 
beans [13]. By harnessing the power of 3D-CNN-based models, we can 
effectively address challenges of classifying diseased and defective us-

ing hyperspectral images. This can result in the preservation of product 
quality, prevention of yield losses, and ensuring food safety standards.

3. CNN structure and concepts

A CNN is comprised of a series of layers each consisting of several 
neurons. As shown in Fig. 2, each layer is the input for the next layer 
in the network. Key building blocks of a CNN are convolution layers, 
detector layers, and pooling layers. A convolution layer uses convolu-

tional kernels to extract low-dimensional features from the input data 
while preserving the spatial relationship between the input data pixels. 
Fig. 3 depicts the movement directions of 1D (spectral), 2D (spatial), 
and 3D (spatial-spectral) kernels within the hypercube. A detector layer 
applies a non-linear function like Rectified Linear Unit (ReLU) to learn 
non-linear representations. Pooling layers make features invariant by 
reducing the dimensionality of data.

Classification methods based on 1D-CNN (spectral feature-based) 
and 2D-CNN (spatial feature-based) cannot efficiently classify hyper-

spectral data as neither utilizes spatial and spectral features together. 
However, a 3D-CNN can extract spatial-spectral features from the volu-

metric data. This is due to its ability to incorporate the spectral dimen-

sion in addition to the spatial dimensions, which enables it to model and 
learn more complex spatiotemporal representations. On the flipside, a 
straightforward generalization of 𝑙 × 𝑙 kernels to their 3-dimensional 
versions increases the number of operations that must be performed to 
apply a kernel by a factor of 𝑙. Not only the application of these ker-

nels is computationally more costly, but also their training becomes 
more challenging, as the kernel has more parameters. Taking no other 
model-changes into account (as, for example in Qiao et al. [52]) we 
would have to shorten kernel-sides by 3√

𝑙2 to keep computational com-
plexity at roughly the same level.
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Fig. 2. A basic conceptual CNN architecture. A CNN consists of multiple layers, including convolution, detector, and pooling layers, where each layer serves as 
the input for the subsequent layer, enabling the extraction of low-dimensional features, learning of non-linear representations, and dimensionality reduction in the 

network.

Fig. 3. Movement direction of convolution process using 1D, 2D, and 3D kernels 
in hypercube. A schematic overview of movement directions for (a) 1D, (b) 
2D, and (c) 3D convolutions in CNNs over hypercube is shown. The X and Y 
directions indicate the movement of the kernel across the spatial dimensions, 
and Z direction shows the movement across the spectral dimension.

In the following, a description of previous review papers that deal 
with the topics of CNNs, hyperspectral data, and applications in agri-

culture and plant research is given. The work of Signoroni et al. [63] is 
aimed at domain professionals seeking comprehensive insights into the 
integration of hyperspectral acquisition techniques and deep learning 
architectures for specific tasks across diverse application domains. This 
3

resource caters to machine learning and computer vision experts, of-
fering a nuanced understanding of how deep learning technologies are 
tailored to effectively process and analyze hyperspectral data, keeping 
them up-to-date with the latest advancements. In Jiang and Li [29] an 
examination of how different CNN architectures have been employed 
in the assessment of plant stress, plant development, and postharvest 
quality. This review categorizes the studies according to the technical 
advancements achieved in terms of imaging classification, object detec-

tion, and image segmentation. As a result, it highlights cutting-edge 
solutions for specific phenotyping applications, offering valuable in-

sights into the current state of the field. An overview of state-of-the-art 
CNN models and visualization techniques for disease diagnosis in plants 
is given in Joseph et al. [31]. The review given in Gill et al. [21] delves 
into the plant stress phenotyping, specifically examining the utilization 
of machine learning and deep learning methodologies. The study en-

compasses a wide range of high throughput phenotyping platforms, 
exploring the integration of data from diverse sources. However, it does 
not discuss 3D-CNN architectures. Finally, a review paper that combines 
all three topics was provided in Wang et al. [80]. In that work, the au-

thors provide an overview of the application of hyperspectral imaging 
in agriculture, encompassing areas such as ripeness and component pre-

diction, classification themes, and plant disease detection. Additionally, 
the study examines recent advancements in hyperspectral image analy-

sis specifically in the context of deep learning models. The review not 
only highlights the achievements in this field but also outlines the exist-

ing challenges associated with deep learning-based hyperspectral image 
analysis. Moreover, the study presents future prospects and potential di-

rections for further research in this domain.

In this review, we update and complement the paper of Wang 
et al. [80] with a particular focus on 3D-CNNs and the entirety of the 
process of creating a high-performant model, including preprocessing 
of data, band selection, exploration of model architectures, and data 
visualization.

A deep learning pipeline for HSI classification typically consists of 
several stages, including data preprocessing, band and feature selection, 
model design, model training, testing, and evaluation (see Fig. 4). Data 
preprocessing involves enhancing the quality of raw HSI data, for ex-

ample, through noise removal, radiometric calibration, and dimension 
reduction. Feature extraction transforms the raw data into a new space 
of features, which is expected to be more discriminative for the clas-

sification task. Band selection defines a subset of the original spectral 
bands that is the most relevant for the classification task. Model design 
is the configuration of hyperparameters of the CNN model, for example, 
the number and sequence of convolutional layers and dense layers, the 
activation functions to be used, and the usage of dropout or skip con-

nections. During the training step, the model is optimized by iteratively 
adjusting its internal parameters (weights and biases) to minimize the 
error between its predicted output and the actual output on the input 
data. Finally, the model is evaluated to learn patterns and relationships 

in the data and to make accurate predictions on new unseen data.
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Fig. 4. Typical deep learning pipeline for HSI data classification. First, the dis-

criminative features and bands are extracted from preprocessed HSI dataset 
of crop. Then, the dataset is split to training, validation, and testing sets. The 
training dataset is used to train the 3D-CNN model, the validation dataset is 
employed to assess the model’s performance and fine tune its parameters, and 
the testing dataset serves to evaluate the final performance and generalization 
ability of the trained 3D-CNN model on unseen data.

4. Data preprocessing

Data preprocessing is a critical step in hyperspectral data analysis, 
aimed at optimizing the quality and quantity of the data. This step 
enhances the suitability of the data for downstream tasks such as classi-

fication and feature extraction. Preprocessing techniques include patch 
extraction, radiometric correction and calibration, smoothing, dimen-

sion reduction, and background removal. Data augmentation also falls 
under preprocessing and has the goal of increasing the volume of train-

ing data.

4.1. Patch extraction

Patch extraction is a technique that involves dividing an image into 
smaller images or patches. In the context of HSI, patch extraction has 
significant advantages for efficient and targeted analysis of specific re-
4

gions of interest within an image. By extracting image patches that 
Smart Agricultural Technology 5 (2023) 100316

contain pixels with similar properties, researchers can focus their analy-

sis on areas of the image that are most relevant to diseased or defective 
areas.

To give a concrete example, Nagasubramanian et al. [45] utilized 
patch extraction to analyze hyperspectral images of soybean crops. In 
their study, they extracted spatial patches of size 64×64×240 from an 
original image of size 500×1600×240, where the first two dimensions 
define the spatial resolution of the image and 240 denotes the num-

ber of spectral bands. By analyzing the properties of pixels within these 
patches, they were able to extract features that were more representa-

tive of the target disease which ultimately improved the accuracy and 
efficiency of their analysis. Furthermore, patch extraction helps to ex-

pand the number of images when there is a lack of data. It also reduces 
computational time, as processing hyperspectral images of large sizes 
can be computationally demanding [51,28].

4.2. Data augmentation

Imbalanced and scarce data is a common problem in many machine 
learning applications (see, for example, [1]) and HSI is no exception. 
Imbalanced data, a special case of data scarcity, refers to the situation 
where the number of samples in each class or category of the data is not 
evenly distributed. This can lead to a bias towards the overrepresented 
classes in the analysis results, which is particularly problematic if the 
minority class is of interest.

To address imbalanced HSI data, one common approach is resam-

pling [47], which involves either oversampling the minority class or un-

dersampling the majority class to balance the class distribution. Resam-

pling can be done randomly or using more advanced techniques such as 
Synthetic Minority Oversampling Technique (SMOTE) [12] or Adaptive 
Synthetic (ADASYN) sampling [23]. Other widespread data augmenta-

tion approaches include transformation techniques such as mirroring 
[42], rotation [42,13], horizontal and vertical flipping [13,50], and 
color jittering [50]. Along with above-mentioned methods, patch ex-

traction (Section 4.1) can also be used to address imbalance HSI dataset.

4.3. Radiometric calibration and correction

Radiometric calibration is an essential step in the accurate operation 
of hyperspectral cameras. It aims to establish a quantitative relation-

ship between the response of the camera sensor (the radiation sensor) 
and the actual reflectance (radiation level) of an object in a given envi-

ronment. The calibration process involves assigning a “true” value for 
either radiation intensity or reflectance to the digital numbers given 
by the camera that represent recorded outputs for each pixel and spec-

tral channel. To that end, calibrated reflectance standards are utilized, 
which usually consist of a matte Lambertian reflecting surface to ensure 
that reflected light is uniform in all directions [60].

The calibration process is then performed as follows: After selecting 
a radiation source that emits a known type and amount of radiation, the 
detector is placed in close proximity to the source to measure the radi-

ation. Next, using calibration factors provided by the manufacturer or 
based on known mathematical formulas (see, for example, [51]) for the 
particular detector, the expected response of the detector is determined. 
The measured response of the detector is then aligned with the expected 
response based on the known radiation level using calibration factors. 
This calibration process should be repeated periodically with different 
radiation sources to ensure the continued accuracy and reliability of the 
detector’s measurements.

Even with calibration performed, hyperspectral cameras are suscep-

tible to radiometric errors that can arise from a variety of sources, 
including sensor drift, electronic interference, light source, and data 
transmission and recording issues. For example, one of the common 
radiometric errors which relates to the camera’s sensor is stripping. 
Each sensor consists of multiple individual detectors that sometimes 

do not function properly due to being out of calibration. Consider a 
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Fig. 5. Black and white calibration of HSI data. (a) The hyperspectral image of 
lettuce rendered before black and white image correction; (b) The image shows 
the rendered hyperspectral image after black and white image correction using 
the Equation (2).

push broom (along-track) camera where its sensor has multiple detec-

tors aligned in a row. When one of them is calibrated slightly different 
from the adjacent detector the striping effect can occur. In this case, 
lines predominantly consisting of varying shades of dark and bright 
pixels formed. Radiometric correction can register and rectify incorrect 
pixel brightness. To achieve this, a series of procedures are employed in-

cluding noise correction, de-striping, line-dropout correction [17], and 
black and white image correction [19,10,13,28]. Fig. 5(b) shows the 
calibrated hyperspectral image of lettuce using the following computa-

tion,

Calibrated HSI Data = Raw HSI Data−Dark Ref

White Ref−Dark Ref
, (2)

where, Raw HSI Data is the image taken by the hyperspectral camera 
without modification, Dark Ref is the image captured by closing the 
camera’s lens, and the White Ref is the imaged white reference with 
even and maximum reflectance across the spectral range.

4.4. Smoothing

Smoothing, also known as filtering, is a technique in HSI to improve 
the quality of the data by reducing noise and artifacts and enhancing the 
signal-to-noise ratio of the data. This technique in HSI can be broadly 
classified into two categories: spatial smoothing and spectral smooth-

ing.

Spatial smoothing techniques selectively smooth out certain features 
in an image by applying filters that amplify or attenuate certain spatial 
frequencies [17]. Common spatial smoothing techniques include Gaus-

sian filtering, mean filtering [54], median filtering, bilateral filtering 
[9], and anisotropic diffusion filtering [39].

Spectral smoothing techniques operate on the spectral domain of an 
HSI image by smoothing the intensity values of neighboring spectral 
bands. As in spatial smoothing the goal is to remove noise [77], reduce 
artifacts, and enhance features in the image. Common spectral smooth-

ing techniques include moving average filtering [77], Savitzky-Golay 
(SG) filtering [78], Fourier filtering, wavelet filtering, and principal 
component analysis (PCA). For example, Cao et al. [10] eliminated the 
random noise that was present in the spectral data of the different re-

gion of interests (ROIs) using SG filtering. The filtering process makes it 
easier to identify the true signal of the sample and remove interference 
caused by size and structure differences between the ROIs. Similarly, 
Jung et al. [33] and Jia et al. [28] used a SG filter to smooth out the 
spectral data and reduce the effect of noise.

As Vaiphasa [77] points out, care must be taken when applying 
5

smoothing techniques. The subjective selection of smoothing filters in 
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hyperspectral remote sensing studies can negatively impact the statisti-

cal properties of the spectral data, which can, in turn, affect subsequent 
analyses. To preserve the statistical properties of the HSI data, the se-

lection of smoothing filters should be done through a comparative t-test 
method that identifies the filter with the least statistical disturbances. 
By using this approach, it is possible to mitigate the negative effects 
of smoothing filters and ensure the reliability of subsequent analyses 
based on statistical class models.

4.5. Dimension reduction

The large number of spectral bands within hyperspectral data often 
makes it challenging to process and analyze HSI data. Dimensionality 
reduction techniques retain relevant information, while allowing the 
model to work on smaller hypercubes downstream. These techniques 
are split into linear and non-linear ones.

4.5.1. Linear techniques

Linear dimension reduction in HSI refers to a set of statistical and 
machine learning techniques that aim to find a lower-dimensional lin-

ear manifold in the high-dimensional space that captures the essential 
spectral information of the data [35]. By embedding the data into this 
lower-dimensional linear space, the dimensionality of the data is re-

duced while preserving as much of the spectral information as possible. 
PCA and Random Forest (RF) are two examples of this technique, and 
demonstrations of both can be seen in Cao et al. [10].

The process of PCA involves first zero-centering the input spectral 
matrix (i.e., the matrix of the spectral bands) and computing its covari-

ance matrix. Next, the eigenvectors and eigenvalues of the covariance 
matrix are calculated, and the eigenvalues are sorted in descending or-

der. The top 𝑘 eigenvalues are then selected and the corresponding 
eigenvectors space computed. The 𝑘-dimensional data is obtained by 
projecting the original spectral matrix into the new space using the se-

lected eigenvectors.

On the other hand, an RF evaluates the importance of each wave-

length by randomly replacing it and measuring its effect on the accuracy 
of the thus trained CNN model. To accomplish this, the RF builds many 
decision trees, and each tree is trained on a different subset of the data. 
The algorithm calculates the importance score for each wavelength 
by measuring the change in the prediction error rate before and after 
randomly replacing the wavelength in the out-of-bag data. The wave-

length with the highest importance score is selected, and this process is 
repeated until the desired number of wavelengths is achieved. The di-

mensionality of the hyperspectral data is thus reduced, while retaining 
the most important information for accurate predictions.

Further linear algorithms for dimension reduction of HSI data are 
described in Fırat et al. [18] and encompass Independent Component 
Analysis (ICA) and PCA-based algorithms like Incremental PCA (IPCA), 
Sparse PCA (SPCA), and Randomized PCA (RPCA).

4.5.2. Non-linear techniques

Non-linear techniques can handle data with complex and non-linear 
structures. Yang et al. [83] classified these techniques into Kernel-

based and manifold learning [83]. Kernel-based techniques, like Kernel 
PCA (KPCA), use non-linear mappings to transform data into higher-

dimensional feature spaces first on which linear techniques can be 
applied. Manifold learning algorithms, on the other hand, aim to di-

rectly discover the intrinsic non-linear structure of data. See Khodr 
and Younes [35] for well-known manifold learning techniques, includ-

ing Isometric Feature Mapping (Isomap), Locally Linear Embedding 
(LLE), Local Tangent Space Alignment (LTSA), Diffusion Maps, Sam-

mon’s Mapping (SM), and Locality Preserving Projections (LPP).

4.6. Background removal

The data captured in hyperspectral images contains both fore-
ground, called the ROI, and background objects. In scenarios where 
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the target object does not cover the entire scanning area the signals 
from background objects can interfere with the data analysis, i.e., the 
background can contain noise that needs to be filtered out [78]. This is 
especially true when dealing with images that exhibit color gradients. 
By masking the background from the data, researchers can focus on the 
spectral signature of the ROI. This leads to improved target detection in 
classification task. It also reduces the computational complexity of sub-

sequent processing steps including the training 3D-CNN models [51].

There are various traditional techniques to extract he ROI from the 
hyperspectral image. These techniques can be classified into several 
categories based on their underlying principles and are discussed sepa-

rately below.

4.6.1. Spectral similarity-based methods

These methods work based on the similarity between the spectra of 
the pixels within an image. Examples of such methods include Spectral 
Angle Mapper (SAM) [37] and Spectral Information Divergence (SID) 
[53]. SAM computes the spectral angle

𝛼 = cos−1
⎛⎜⎜⎝

∑𝜆

𝑖=1𝑅𝑖 ⋅ 𝑇𝑖

(
∑𝜆

𝑖=1𝑅
2
𝑖
)
1
2 ⋅ (

∑𝜆

𝑖=1 𝑇
2
𝑖
)
1
2

⎞⎟⎟⎠
(3)

between the target reference spectrum 𝑅 and each pixel spectrum 𝑇
for all spectral bands 𝜆 in the hyperspectral image. This results in a 
similarity measure that is insensitive to illumination variations [2]. On 
the other hand, SID works based on the concept of information theory 
(entropy). It compares the spectral information content of each pixel 
to a reference spectral information content. In general, SAM is better 
suited for well-defined spectral variations and low background noise, 
while SID is more robust to complex background noise and illumination 
variations.

4.6.2. Statistical-based methods

These methods leverage statistical techniques to identify ROIs that 
share similar spectral properties and produce a set of uncorrelated com-

ponents capturing different aspects of spectral variability within the 
image. For example, Minimum Noise Fraction (MNF) [43] is specifi-

cally designed to reduce the impact of noise in the data by separating 
the noise and signal components of the HSI data. This makes it particu-

larly useful for operating on noisy HSI data but at the expense of more 
computational time. Another technique, ICA (see Section 4.5.1), aims 
to separate the mixed signals into their independent components, pro-

viding a more flexible approach to identify subtle spectral differences 
between ROIs. Finally, PCA [13] decomposes the original HSI data into 
orthogonal components that represent the directions of maximum vari-

ance in the data. In general, PCA is computationally more efficient than 
ICA and MNF, as it involves a simpler mathematical transformation that 
uses standard matrix operations.

4.6.3. Spatial-based methods

These methods exploit the spatial correlation present in the image to 
differentiate between pixels within and outside the ROI. Typically, these 
methods apply morphological operations or spatial filtering techniques 
to extract features such as edges or texture, which are then used to seg-

ment the image into ROIs. The Morphological Attribute Profile (MAP) 
[14] and the Spatial-Spectral Endmember Extraction (SSEE) algorithm 
[49] are examples of spatial-based methods that use mathematical mor-

phology and spatial filtering, respectively.

SSEE first identifies the endmembers, or pure spectral signatures, 
present in the HSI data, and then uses a spatial clustering algorithm to 
group adjacent pixels with similar spectral properties into ROIs. On the 
other hand, MAP applies a series of morphological opening and closing 
operations to the image to identify connected regions of pixels with sim-

ilar morphological attributes, such as size and shape. These connected 
regions can then be used as ROIs. These methods are computationally 
6

efficient and can be useful in scenarios where spectral information alone 
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is not sufficient for accurate ROI extraction, such as in cases of low spec-

tral contrast or high noise levels.

4.6.4. Hybrid methods

These methods combine techniques to improve the accuracy and ef-

ficiency of the ROI extraction process. One approach can be combining 
statistical-based techniques such as PCA, ICA, or MNF with spatial-

based techniques such as MAP or SSEE. For example, by combining 
MAP and PCA we can exploit both the spatial and spectral information 
[70] in the HSI data for ROI extraction. These hybrid methods can be 
effective in cases where neither spatial nor spectral methods alone are 
sufficient for accurate ROI extraction.

4.6.5. Machine learning-based methods

Machine learning algorithms can also be used to extract the ROI. 
This process involves training a model using labeled data to identify 
and extract regions with specific spectral characteristics. Once trained, 
the model can be used to predict the presence of those characteristics 
in unlabeled data and extract ROIs. This procedure is computationally 
efficient and allows for the extraction of subtle and complex patterns 
that may not be easily identifiable through traditional methods. Some 
instances of such techniques are Support Vector Machines (SVM) [6], 
RF [7], and CNN [40,79].

4.6.6. Software-assisted manual annotation

Manual definition of the ROI can be assisted by software specifi-

cally built to handle HSI data. Amongst these are for example ENVI 
[38] and Spectronon [55] as commercial products, as well as the MAT-

LAB Hyperspectral toolbox. Examples for open-source and free software 
are SeaDAS [46], the Orfeo ToolBox [11], and RSGISLib [8]. These 
packages provide HSI data analysis for a wide range of tasks discussed 
before. An example of software-assisted annotation is the work of Jin 
et al. [30] in which the authors generated an ROI using ENVI by manu-

ally selecting the tissues or areas of interest in the false color images of 
HSI data.

Researchers can utilize such software in addition to the above dis-

cussed algorithms. For example, Gao et al. [19] developed an open-

source software which is specifically designed for analyzing HSI data of 
seeds. It is able to remove the background of the HSI data and produces 
a binary mask using a user-defined minimum and maximum intensity 
threshold along with a component-searching algorithm. The results are 
an accurate segmentation of the seeds even when they overlap.

5. Band and feature selection

The selection of spectral bands in HSI is another crucial preprocess-

ing step for classification tasks. It entails the identification of a subset 
of the most discriminative spectral bands from all available bands. This 
process is instrumental in reducing data dimensionality by eliminat-

ing redundant bands, thereby significantly reducing the computational 
overheads of downsteam tasks. Furthermore, the careful selection of 
spectral bands can also reduce the effects of noise in the data. In general, 
based on the survey of Sun and Du [71], band selection mechanisms can 
be categorized into six groups as follows (another classification of meth-

ods is presented in Sawant and Prabukumar [58]).

5.1. Ranking-based selection

Ranking-based band selection methods evaluate the significance of 
each spectral band based on a predetermined criterion and choose the 
most important bands in a sorted order. These methods can be cat-

egorized into two types: supervised and unsupervised. In supervised 
ranking-based methods, labeled training samples are utilized to de-

termine the importance of each spectral band, while in unsupervised 
ranking-based methods, statistical properties of the data are used for 

the same purpose.
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One example of such method is spectral differentiation. Qi et al. [51]

employed first and second order differentiation to decrease the compu-

tational complexity of HSI data containing 204 bands. The first deriva-

tive can effectively pinpoint areas in the spectrum where the rate of 
change is highest. This indicates the presence of sharp spectral features 
such as absorption or emission lines. Moreover, it allows for the se-

lection of bands that capture these features and thus, provide critical 
information for classification or detection tasks. The second derivative 
is useful for identifying regions of the spectrum where the rate of change 
of the first derivative is highest, signifying the presence of spectral cur-

vature. The selection of bands that capture the shape of the spectral 
signature, based on this information, can enhance the differentiating 
power in classification or detection tasks. Likewise, Jung et al. [33]

achieved an increase in accuracy using spectral differentiation and ex-

pansion of the input in the vertical direction of the raw data. This 
technique was applied in addition to SG smoothing (see Section 4.4) 
to further improve data quality.

5.2. Searching-based selection

Searching-based band selection methods involve the creation of a 
criterion function such as Euclidean distance and Bhattacharyya dis-

tance [26] to evaluate the performance of each spectral band based on a 
specified optimization objective. The first step involves creating an ini-

tial subset of bands, followed by an assessment of the criterion function 
for the subset. The next step is applying a searching strategy to iden-

tify the best subset of bands that maximizes the criterion function, and 
evaluating the selected subset based on data classification performance. 
This iterative process continues until the desired level of performance 
is reached. Searching-based methods largely depend on the quality of 
the criterion function and the optimization strategy employed. Incre-

mental searching [81,57], updated searching [20,62], and eliminating 
searching [68] are among the commonly utilized strategies.

5.3. Clustering-based selection

Clustering-based methods for hyperspectral band selection group 
bands into clusters and select representative bands from each cluster 
to create a final subset. These algorithms can be unsupervised [27,82], 
supervised [44] or semisupervised [66,65]. The selection of representa-

tive bands is typically performed using information measurements, such 
as mutual information or Kullback–Leibler divergence. Commonly used 
clustering techniques are 𝐾-means, affinity propagation, and graph 
clustering. 𝐾-means selects the best cluster centers that minimize the 
sum of distances to a set of putative center candidates. Affinity prop-

agation selects exemplars by considering the correlation or similarity 
among bands and the discriminative capability of each band.

5.4. Sparsity-based selection

Sparsity-based techniques for band selection rely on sparse represen-

tation or regression to identify representative bands. The most common 
of these methods are discussed separately below.

5.4.1. Sparse nonnegative matrix factorization-based methods

These methods [41] break down the hypercube into a set of building 
blocks, which are both nonnegative and sparsely encoded. This pro-

motes a feature extraction process that combines these building blocks 
to create a parts-based representation of the original data. The goal of 
this method is to identify the most informative bands of the HSI data 
matrix by optimizing an objective function that includes sparsity con-

straints.

5.4.2. Sparse representation-based methods

Sparse representation-based methods [86,72] use pre-defined or 
learned dictionaries to select informative bands of the HSI data ma-
7

trix based on their sparse coefficients. These methods rank the bands 
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according to the frequency of their occurrence in the sparse coeffi-

cient histograms. In some cases, sparse representation-based methods 
can also be designed to solve multiple tasks simultaneously, and an im-

mune clonal strategy can be used to search for the best combinations of 
informative bands.

5.4.3. Sparse regression-based methods

Sparse regression-based techniques [69,15] transform the band se-

lection problem into a regression problem and estimate the most repre-

sentative bands by solving a sparse regression problem. These methods 
can also include sparsity constraints to encourage the selection of only 
the most informative bands for the regression model.

5.5. Embedding-learning based selection

Embedding-learning based methods aim to learn a low-dimensional 
representation of the spectral data, also known as an embedding, that 
captures the most salient features of the data. There are several types of 
embedding learning-based methods that can be used for band selection, 
including autoencoders [75], Deep Neural Networks (DNN) [87], and 
CNNs [61]. Autoencoders learn a compact representation of the input 
data by training a neural network to encode the input into a lower-

dimensional space and then decode it back into the original space. DNN, 
on the other hand, consists of multiple layers of interconnected neu-

rons. This architecture enables the network to learn complex patterns 
and features in a hierarchical manner, empowering it to extract high-

level representations from the input data. Meanwhile, CNNs can learn 
spatially invariant features from image data.

These techniques aim to learn a set of parameters that minimize an 
objective function that measures the model’s performance on a partic-

ular task, such as classification or target detection. Band selection is 
integrated into the optimization process by constraining the learning 
algorithm to focus on a subset of the available bands, or by assigning 
weights to each band that reflect its relevance to the task at hand. The 
resulting model can then be utilized to predict the class label of new 
samples or to detect the presence of specific targets in the image. For 
example, Chen et al. [13] employed a DNN based binary classification 
to identify the foreground and background regions of the HSI data. Sub-

sequently, connected component labeling algorithms and edge contours 
were used to isolate the ROI from the image for further analysis.

Moreover, Jia et al. [28] implemented a CNN-based band selection 
module that works based on a group convolution technique, which in-

volves applying a 1×1 one-dimensional convolution (equivalent to a 
scalar multiplication) to each band of the input hyperspectral image in-

dependently. This technique helps to overcome the problem of mutual 
interference between different channels. The weights of the convolu-

tional kernel are updated in the early stage of the network training 
using a loss function and an auxiliary classifier (see also the next Sec-

tion 6). The weights represent the importance of each band, with a 
higher absolute value of weight indicating greater importance of the 
corresponding band.

5.6. Hybrid-scheme based selection

Hybrid-scheme based methods involve combining multiple band se-

lection techniques to select the most appropriate bands. A popular com-

bination is clustering and ranking [84,16], where clustering is used to 
group bands and ranking is used to select the most important bands 
within each cluster. Other hybrid methods combine clustering with 
searching or combine ranking with searching to further optimize band 
selection.

6. Network architecture design: feature extraction and 
classification

The objective of neural network architecture design is to create a 

model that can effectively learn from the input data and generalize well 
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Table 1

Non-hybrid 3D-CNN-based architectures for detection of diseased and defected hyperspectral images of crop.

CNN Model Information Reference

3D-CNN-based Dataset: 111 hyperspectral images of soybean

Type of Disease: Charcoal rot

Imaging Device: Pika XC hyperspectral line imaging scanner

Spectral range: 400–1000 nm

GPU: NVIDIA Tesla P40

Nagasubramanian et al. [45]

3D-CNN based on AlexNet Dataset: 40 hyperspectral images of Grapevine groups

Type of disease: GVCV

Imaging Device: SPECIM IQ
Spectral range: 400–1000 nm

GPU: -

Nguyen et al. [47]

HyperSeed Dataset: 200 rice seeds (274,641 pixels)

Type of defect: Heat stress

Imaging Device:Micro-Hyperspec Imaging Sensors, Extended VNIR version

Spectral range: 600-1700 nm

GPU: -

Gao et al. [19]

GitHub Repository

3D-CNN-based Dataset: Above 200 strawberry leaves (3,110 ROIs)

Type of disease: Gray mold

Imaging Device: Corning microHSI

Spectral range: 400-1000nm

GPU: NVIDIA RTX3090 X (24 GB memory)

Jung et al. [33]
to new, unseen data. In order to achieve this for HSI classification, a 
network architecture must be developed that can capture the complex 
spectral and spatial information present in the data.

As an integral aspect of designing a neural network, the decision of 
the number of layers to use is a crucial one. While the inclusion of more 
layers in a network has been shown [76,32] to improve performance, 
it can simultaneously present several challenges. A notable challenge 
arises from the potential occurrence of vanishing or exploding gradients 
[73], where the gradient signal becomes too small or too large as it 
backpropagates through the layers during training (see also Subsection 
6.2.1). Such a phenomenon makes it difficult for the network to learn 
and adjust its weights effectively.

Moreover, as the number of layers and parameters increases, the 
risk of overfitting rises, which is characterized by the network’s ability 
to perform exceptionally well on the training data, but not generalize 
well on unseen data. Consequently, the network may become compu-

tationally expensive to train and use due to its high processing power 
and memory requirements. Additionally, gradient computation time in-

creases, thereby impeding the training’s efficiency. Hence, careful con-

sideration of these challenges and trade-offs is imperative to designing 
a network that balances complexity and performance.

For this review, we classified 3D-CNNs into hybrid and non-hybrid 
structures. A network is hybrid if it includes either specific module(s) 
that improve feature extraction, accuracy, and performance or if it in-

tegrates 2D-CNN within the 3D-CNN architecture. In the following, we 
present 3D-CNN models for the classification of diseased and defected 
crop using HSI data. A summary of these architectures is also given in 
Tables 1 and 2.

6.1. Non-hybrid networks

Nagasubramanian et al. [45] presented a 3D-CNN model to clas-

sify healthy and diseased crop. This model consists of two convolution 
layers with max pooling layers, and two Fully Connected (FC) lay-

ers, trained using the Adam optimizer. To prevent overfitting, dropout 
mechanisms were used after the first max pooling and first FC layer. A 
Weighted Binary Cross Entropy (WBCE) function of the form

𝐿𝑊𝐵𝐶𝐸 (𝑦, 𝑦̂) = −[𝛽 ⋅ 𝑦 log(𝑦̂) − (1 − 𝑦) log(1 − 𝑦̂)] (4)

was implemented to address imbalanced training data. Here 𝑦 and 𝑦̂
8

represent binary variables for whether the ground truth and predicted 
result belong to a given class, respectively (see also Section 4.2 for a 
discussion on how to counteract imbalances in datasets). Using the coef-

ficient 𝛽 the WBCE loss function assigns higher weights to the minority 
class, for example, the false negatives rate decreases if 𝛽 is set higher 
than 1, while setting it smaller than 1 reduces the false positive rate.

Although the above technique can classify and detect diseased crop, 
detection of asymptomatic diseased crops at early stage and differenti-

ating it from the healthy crops can be more challenging. In this respect, 
Jung et al. [33] developed a 3D-CNN model that improves classifica-

tion accuracy of the asymptomatic diseased crop without modification 
and preprocessing of input HSI data. The model consists of four 3D con-

volution layers in which the first and fourth layers each are followed 
by a 3D max pooling layer and a batch normalization. The rest of the 
convolution layers are only followed by batch normalization. The out-

put of the last 3D convolution layer is passed through a global average 
pooling and two dense layers. In Jung et al. [33] the results were im-

proved further by preprocessing the input HSI data which went through 
spectral differentiation, vertical expansion, and smoothing.

Automating the classification procedure of HSI data using software 
can effectively mitigate the time-consuming process of implementing 
a deep learning pipeline. In this respect, Gao et al. [19] developed an 
open-source software that classifies seeds at pixel level using 3D-CNN. 
Though at first it was developed for a specific crop (rice), the test exper-

iments over other seeds are promising. This software utilizes a 3D-CNN 
that consists of two 3D convolution layers, with two and four 3D con-

volution kernels for the first and second layers, respectively. The output 
is then flattened via one FC layer and classification is performed using 
a softmax function. However, this software as part of its feature extrac-

tion process does not consider the global feature relationship which can 
improve its ability to recognize and classify seeds accurately.

Nguyen et al. [47] implemented a 3D-CNN for classification of a 
small size dataset. The feature extraction part is implemented based 
on AlexNet [36] and constitutes 5 convolutional layers followed by a 
flattening layer. The input layer takes an input of size 512×512×203, 
where 203 stands for number of bands. The first two convolutional lay-

ers are followed by a max pooling layer and a batch normalization. 
After that each convolutional layer is followed by a max pooling layer 
and after the last max pooling layer batch normalization and flatten-

ings is applied before feeding the result into a RF or SVM for binary 

classification (healthy or diseased crop).

https://github.com/tgaochn/HyperSeed
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Table 2

Hybrid 3D-CNN-based architectures for detection of diseased and defected hyperspectral images of crop.

CNN Model Information Reference

Hypernet-PRMF Dataset: 16 hyperspectral images of peanut

Type of disease: Mold

Imaging Device: SOC710E portable hyperspectral imager

Spectral range: 400–1000 nm

GPU: NVIDIA Tesla P100 GPU (12G)

Liu et al. [42]

Deep ResNet 3D-CNN Dataset: 16,346 hyperspectral images of blueberry

Type of defect: Distinguishing decayed and sound blueberries

Imaging Device: -
Spectral range: 400-1000nm

GPU: -

Qiao et al. [52]

SDC-3DCNN Dataset: Rice leaves (Number of taken samples are not determined.)

Type of disease: BLB

Imaging Device: Raptor EM285

Spectral range: 378.28–1033.05 nm

GPU: NVIDIA GeForce RTX 2080Ti GPU and the AMD Ryzen 5-1600 Six-Core processor @ 
3.20 GHZ CPUs

Cao et al. [10]

2D-3D-CNN (Defect detection 
module of RT-CBDIA)

Dataset: 1026 coffee beans

Type of defect: Black, insect-damaged, and shell

Imaging Device: Imec XIMEA snapshot sensor

Spectral range: 660-980 nm

GPU: GPU of GEFORCE GTX1660 Ti and a RAM of 16 GB

Chen et al. [13]

ResNet Dataset: 210 lemons

Type of defect: Bruise

Imaging Device: It was not determined, however was provisioned by Noor Imen Tajhiz

Co..

Spectral range: 400-1100 nm

GPU: Trained on Google Colab

Pourdarbani et al. [50]

PLB-2D-3D-A Dataset: 15,360 potato leaves

Type of disease: PLB

Imaging Device: Specim IQ
Spectral range: 400-1000 nm

GPU: NVIDIA Tesla V100

Qi et al. [51]

Y-Net Dataset: 200 diseased corn leaves (extracted 6,264 regions)

Type of disease: Brown spot and anthracnose

Imaging Device: An HSI system provided by Head Wall

Spectral range: 400-1000 nm

GPU: RTX 3090 24 Gb

Jia et al. [28]
6.2. Hybrid networks

6.2.1. 3D-CNN architectures based on ResNet

To address the challenges of vanishing or exploding gradients Qiao 
et al. [52] proposed to leverage residual convolutional blocks within 
a 3D deep ResNet architecture. This approach reduces the number of 
channels through the use of identity residual blocks and a convolu-

tional residual blocks. The identity residual block maintains the same 
input and output dimensions, while the convolutional residual block 
changes the number of channels. The use of a l×l×l convolution kernel 
as the shortcut in the convolutional residual block reduces the number 
of parameters and computational complexity.

To further improve efficiency, Qiao et al. [52] adopt a bottleneck 
structure, that reduces the number of required convolution operations. 
Each convolutional layer is followed by a batch normalization layer 
to prevent vanishing gradient and enhance convergence rate. The net-

work uses Exponential Linear Unit (ELU) as the non-linear activation 
function, which addresses the problem of dying neurons in ReLU.

In order to identify the appropriate hyperparameters, the authors 
employed a Tree-structured Parzen Estimator (TPE) as an optimization 
algorithm. The TPE utilizes a probabilistic model to approximate the 
distribution of the objective function and guides the search for optimal 
hyperparameters. For the classification, a 7×7×1 global pooling layer 
and a FC are utilized. This model halves the number of parameters and 
improves the computational time up to 10%. Moreover, the study of 
Pourdarbani et al. [50] over performance of well-known architectures 
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in detection of defective crop demonstrates that residual connections 
achieve higher accuracy, while training faster despite having more pa-

rameters.

6.2.2. Hypernet-PRMF network

Liu et al. [42] presented a feature pre-extraction and a multi-feature 
fusion block to extract peanut characteristics from hyperspectral data. 
The feature pre-extraction includes constructing a Peanut Recognition 
Index (PRI) based on two informative bands to distinguish healthy, 
moldy, and damaged peanuts.

The multi-feature fusion block is a technique used in image segmen-

tation to fully extract spatial and spectral features from HSI data. This 
technique involves using multiple types of convolution kernels includ-

ing 2D convolution for common texture features, separable convolution 
for increased feature diversity, depthwise convolution for band feature 
extraction, and 3D convolution for spectral change information. The 
convolutions are concatenated after normalization and activation func-

tions to enhance diversity and improve recognition accuracy.

Moreover, the authors employed feature pre-extraction and multi-

feature fusion block techniques in their proposed peanut recognition 
model, called Hypernet-PRMF network. This model works at both 
peanut- and pixel-level recognition. The model consists of four parts: 
feature pre-extraction, down-sampling, up-sampling, and prediction. 
The feature pre-extraction part enhances the differentiation between 
different peanut features. The down-sampling part reduces the size of 
the image while increasing the number of convolution kernels, whereas 
the up-sampling part reconstructs the image while reducing the num-
ber of convolution kernels. The prediction works based on the softmax 

https://hyperspectralimaging.ir
https://hyperspectralimaging.ir
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function and the class of maximum predicted probability is chosen as 
the final recognition result. The model achieves pixel-wise recognition 
accuracy with the use of the watershed segmentation algorithm. This 
technique has the potential to be employed for detection of other crops 
like sorghum.

6.2.3. Spectral dilated convolution 3D-CNN

Cao et al. [10] proposed a spectral dilated convolution (SDC)-3D-

CNN model to detect crop’s asymptomatic diseases at an early stage. 
This model consists of SDC modules along with residual blocks that 
prevent the gradient vanishing problem. SDC extends the idea of dilated 
convolution which expands the receptive field of convolution kernels 
without augmenting the model’s parameterization. Receptive field is the 
portion of the input space needed to create a filter at any convolutional 
layer. The 3D-SDC extends the receptive field of convolutional kernels 
to the spectral dimension. It works based on the principle of applying a 
filter to an input with intermittent intervals, which are dictated by the 
spectral dilation rate.

The network was tested with top 50, 100, 150, and 200 significant 
wavelengths extracted by RF and Principal Components (PCs) of the 
same ranking by PCA along with different spectral dilation rate to detect 
healthy, asymptomatic, and symptomatic crop. The experiment result 
shows higher detection performance of the network using top the 50 
important features extracted by RF at a dilation rate of 5.

6.2.4. Merged 2D- and 3D-CNN architectures

Chen et al. [13] developed a 2D-3D-CNN for real-time crop defect 
detection. This network is the detection module of a real-time coffee-

bean defect inspection algorithm (RT-CBDIA). The network consists of 
a 2D-CNN and a 3D-CNN, the former one is responsible to extract spa-

tial features and the latter one is accountable for extraction of spectral 
features. Combining these two networks can boost feature extraction by 
providing robust and discriminative spectral-spatial features.

The 3D-CNN is comprised of two convolution blocks with the same 
structure as in the 2D-CNN except that 3D convolutions and pooling 
layers are used. The two networks run simultaneously and their last 
pooling layers will be merged and fed to a FC layer and then a dropout 
layer to avoid overfitting. Finally, a softmax layer determines each crop 
health status.

Likewise, Qi et al. [51] fully extracted spatial-spectral features by 
merging 2D- and 3D-CNN architectures using AttentionBlock [85] and 
Squeeze-and-Excitation (SE)-ResNet [25]. To accomplish this, the model 
first creates a neighborhood block of size 11×11×10 around a center 
pixel from the input image. Then, 2D convolution operations are used 
to extract spatial correlation features from the neighborhood block, 
and 3D convolution operations are used to capture spectral correlation 
features. The model uses four 2D convolutional layers and four 3D con-

volutional layers to capture feature maps of various spatial and spectral 
dimensions. By using different sizes of convolution kernels and down-

sampling steps, varied types of information can be captured.

Finally, the extracted feature maps are fused together to create a 
final set of feature maps that contain valuable and pertinent infor-

mation required for effective classification. Herein, AttentionBlock and 
SE-ResNet play important role, as outlined immediately below.

An AttentionBlock is used to highlight important information in the 
fused spectral space feature map. It works by considering the similar-

ity between each pixel in the feature map and weighting the relevant 
pixels with higher importance. This is achieved through a series of 2D 
convolutions with a kernel size of 1×1 to transform each pixel into an 
𝜆-dimensional vector, where 𝜆 represents the number of feature chan-

nels in the input tensor. The similarity between any two pixels is then 
calculated using the dot-product of their transformed vectors, and the 
results are weighted using a softmax function.

The output of an AttentionBlockt is a feature map that emphasizes 
the relevant information while suppressing irrelevant information. This 
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process allows AttentionBlocks to focus on the relevance between pix-
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els in the entire feature map, rather than just the spatial range of the 
convolution kernel size used in traditional convolution and pooling 
operations. This results in better classification results with little com-

putational complexity.

In order to enhance the representational power of CNNs, SE modules 
as a type of attention mechanism can adaptively recalibrate the fea-

ture maps. It does so by capturing channel-wise feature dependencies 
through a squeeze operation, followed by an excitation operation that 
learns how to weight the importance of each feature map. This mecha-

nism allows the model to pay more attention to salient channel features 
and disregards the less significant ones. By integrating AttentionBlocks 
and SE-ResNet, the network of Qi et al. [51] can better generalize in 
classification and achieve higher accuracy.

Moreover, in the context of detection of two similar crop diseases 
that are indistinguishable to the naked eyes, a recent study by Jia 
et al. [28] developed a new network called Y-Net. The Y-Net model 
takes in 10×10×203 hyperspectral data cubes as input and it consists of 
a channel attention mechanism, a band selection module with auxiliary 
classifier, a 3D-2D-CNN architecture, and a classification module.

A CNN architecture is employed to conduct the band selection, 
where 1×1 1D convolutions are assembled to modify the parameters 
of the convolutional kernel in the early phase of the network training. 
The magnitude of the weight of the convolution kernel is indicative 
of the relevance of the band, with greater absolute weight values sig-

nifying more distinctive bands. The use of group convolution helps in 
preventing any hindrance from nearby bands, while the ReLU activation 
function is adopted for fast network convergence without the problem 
of saturation. The output of this step will be given to an auxiliary clas-

sifier that enables early-stage weight updating in the band selection 
block.

The auxiliary classifier module updates the loss function of the Y-Net 
model:

𝐿(𝑦, 𝑦̂) =(1 − 𝜃) ⋅𝐿Final Classifier(𝑦, 𝑦̂)+

𝜃 ⋅𝐿Auxiliary Classifier(𝑦, 𝑦̂) + 𝛽 ⋅
𝑛∑

𝑗=1
𝑊𝑗, (5)

where 𝑦 is the ground truth label, 𝑦̂ is the predicted label, and 𝜃 and 𝛽
are hyperparameters that control the trade-off between the two losses 
and the sparsity of the band selection module, respectively. 𝑊𝑗 is the 
weight of the 𝑗th band in the band selection module and n is the num-

ber of total bands. The loss is a combination of the cross entropy losses 
of the final classifier and the auxiliary classifier and the sum of the 
weights of the band selection module. The purpose of this combination 
is to control the classification accuracy while updating the weights of 
the band selection layer. The adjustment factor 𝜃 gradually decreases 
as the number of training iterations increases. The presence of this ad-

justment factor enables the Y-Net model to update the weights in the 
band selection module in the early stages of training and gradually shift 
towards training the final classifier to learn a more accurate classifica-

tion model. Additionally, the auxiliary classifier helps to constrain the 
weight sparsity of the band selection module, ensuring that the score of 
unimportant features is close to zero.

The results of Jia et al. [28] show that by removing nonessential and 
nondiscriminative bands the accuracy of the Y-Net model increases and 
reduces the model size and the number of parameters. Moreover, since 
the band selection module is integrated into an overall architecture, the 
training time does not significantly increase.

7. Visualization techniques for HSI classification decisions

Visualization techniques can be employed to observe the contribu-

tion of pixels in the classification decision. These techniques allow us to 
identify the pixel locations associated with the most important spectral 

bands that play a crucial role in the final classification results.
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Saliency maps [64] are one of the essential and traditional visual-

ization tools to identify the most sensitive regions (crucial pixels) in an 
image with respect to a model’s predictions. This technique works by 
computing the gradient of the output class score with respect to the in-

put image. This gradient represents how much each pixel in the input 
image contributes to the final classification decision. Next, the abso-

lute values of these gradients are summed across the channels to obtain 
a saliency map, which highlights the most salient regions of the input 
image for the predicted class.

For example, Nagasubramanian et al. [45] discovered that saliency 
maps can help to locate the most sensitive pixel locations in infected 
crop images, which are often the severely infected areas. Conversely, 
both healthy and infected crop images had saliency map gradients that 
were primarily focused around the mid-region of the crop stem, high-

lighting the stem’s importance in crop classification. Moreover, Cao 
et al. [10] observed that the significant wavelengths extracted by RF 
from raw HSI data overlaps the saliency-sensitive wavelengths. More 
importantly, saliency maps can determine significant wavelengths for 
classification which are not extracted by RF.

Another visual explanation technique for CNN decision is the 
Gradient-weighted Class Activation Mapping (Grad-CAM) [59]. It was 
introduced as an improvement over CAM [88]. CAM involves modify-

ing a pre-existing CNN model by replacing the final FC layer with a 
global average pooling layer, which retains essential channel informa-

tion while reducing the spatial dimensions. This modification enables 
the utilization of feature maps from the preceding layer. By applying 
learned weights to these feature maps through global average pooling, 
CAM generates a map that highlights the crucial regions associated with 
the predicted category. However, CAM provides a coarse localization of 
the important regions within an image. It highlights the regions that 
contribute most to the predicted class, but it does not provide precise 
boundaries of those regions. To address this limitation, Grad-CAM was 
introduced as an extension to CAM.

Grad-CAM enhances the CAM approach by incorporating gradient 
information. Similar to CAM, Grad-CAM also utilizes a global average 
pooling layer after the last convolutional layer to obtain importance 
scores for each channel in the feature maps. However, instead of learn-

ing separate linear models for each class, Grad-CAM calculates the 
gradients of the predicted class score with respect to the feature maps. 
These gradients are used to weigh the feature maps and enables Grad-

CAM to identify more intricate features that play a significant role in 
the classification decision.

In addition, there are further statistical techniques that help in ana-

lyzing the importance of individual features (spectral bands) of HSI data 
in a classification. Light Gradient Boosting Machine (LightGBM) [34,19]

is one of such methods that uses decision trees in calculating feature im-

portance. It builds decision trees in a leaf-wise manner, meaning that 
the algorithm grows the tree by adding new leaves one at a time which 
is computationally faster compared to level-wise approach by selecting 
the best split based on the maximum reduction in loss function for all 
leaves in the tree. Therefore, LightGBM calculates the importance of 
each feature by evaluating how much it contributes to the reduction in 
loss function across all trees. The feature importance score is calculated 
by summing up the number of times a feature is used to split the data 
across all trees, weighted by the improvement in accuracy achieved by 
each split. Features that are used more frequently and result in larger 
improvements in accuracy are assigned higher importance scores.

8. Discussion and conclusion

In this study, we conducted a comprehensive review of 3D-CNN-

based models applied in the domain of agriculture using non-UAV-based 
HSI data. Our analysis delved into diseased and defective crops, focus-

ing on the structures and efficiencies of the models, the quantity of 
datasets utilized, and the necessary preprocessing steps. This review 
11

indicates the advantages of 3D-CNNs in capturing spatial-spectral in-
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formation within hyperspectral data, enabling them to outperform 1D-

and 2D-CNN in hyperspectral image classification. With the aim of as-

sisting computer vision experts and agriculture-domain researchers in 
tackling HSI classification tasks for crops experiencing stress, this com-

prehensive review provides valuable insights and guidance.

In general, HSI holds great potential for detecting subtle changes 
in crop growth and development, making it a promising technique for 
diagnosing crop diseases and defects. Despite this potential, our study 
indicates that there is still limited research conducted that use 3D-CNNs 
in this context. Furthermore, the studies that are performed are often 
very application-specific and it is unknown how well the performed 
methods and models generalize to a broader range of applications. We 
identify three major challenges that must be overcome to achieve a 
broader adoption of HSI in general and the usage of 3D-CNN for HSI 
classification problems: limited availability of hyperspectral data, com-

putational complexity of 3D-CNN models, and the costs of hyperspectral 
imaging hardware. In the following we address each of these challenges 
in more detail and offer ideas on how to overcome or avoid them.

Limited availability of varied hyperspectral data on diseased and 
defective crops presents a significant challenge for researchers, farm-

ers, and stakeholders in the agriculture industry who rely on data to 
make informed decisions. The lack of data in this area of the research 
hampers efforts to understand the extent of the problem and develop 
effective solutions. It makes it difficult to track the progress and suc-

cess of any initiatives aimed at improving crop health and reducing the 
prevalence of disease and defects. To address this issue, there is a need 
for increased investment in data collection and data sharing, as it has 
been done in the past, for example, for RGB-data (e.g., Beck et al. [4,3]). 
Large-scale HSI data collection and publicly available datasets will al-

low research groups to develop the next generation of models, even 
if they have no access to the otherwise required hardware and plant 
material. Even with small datasets there are also techniques to models 
beyond the specific application case they had been trained on. In re-

cent years, transfer learning and active learning techniques have been 
increasingly used together to tackle the challenges posed by limited 
data. By leveraging knowledge from pre-existing models, transfer learn-

ing can enhance the accuracy of models trained on limited HSI data. On 
the other hand, active learning involves selecting and annotating infor-

mative samples to improve the effectiveness of models trained on small 
HSI datasets. By combining the two techniques, transfer learning and 
active learning can address the bottleneck of limited HSI data and en-

able the development of robust 3D-CNN models capable of accurately 
classifying HSI data.

The computational complexity of 3D-CNN models is a barrier for 
their deployment in the field, for example, in edge computing devices or 
even as part of an embedded system in UAVs or agricultural equipment. 
Real-time diagnosis could significantly enable farmers to quickly detect 
and respond to disease outbreaks, which can help to prevent the spread 
of disease and reduce crop losses. This requires, however, researchers to 
explore ways to optimize their models for speed and efficiency, partic-

ularly their memory-footprint. This can be achieved through advancing 
the capabilities of single board computers, particularly their GPU and AI 
accelerators, on the one side, as well as developing lightweight models 
on the other side, for example, by reduction of used bands or group-

ing of bands into indices. Identifying the spectral bands that are most 
informative for detecting a varied range of diseases and defects would 
play an important role in reducing the model’s training computational 
time, decreasing the number of parameters, achieving higher accuracy 
and generating a more lightweight model.

Despite the valuable insights hyperspectral imaging provides re-

garding the condition and health of crops, deploying this technology 
is relatively costly compared to RGB and multispectral imaging tech-

nologies. The higher expense is primarily attributed to the increased 
processing power required to analyze the HSI data and the extensive 

range of spectrum offered by hyperspectral cameras.
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One approach to consider for cost reduction is the limitation of the 
number of bands in hyperspectral cameras, as not all spectral bands may 
be equally crucial for disease and defect detection. Therefore, instead of 
having an imaging device that supports full range of wavelengths from 
the visible to the infrared spectrum, we can deploy imaging systems 
that work with essential wavelengths rather than hundreds of spectral 
bands. In this respect, some companies already provide the facility to 
design customized multispectral systems, which work with bands that 
had been identified to be the most discriminative (see Hamila et al. [22]

for a 3D-CNN model training advantage of this approach). Therefore, 
developing methods for identifying the most informative spectral bands 
would also be cost beneficial. Furthermore, by leveraging Machine 
Learning as a Service (MLaaS) platforms [48], the need for required 
infrastructure to process HSI data using 3D-CNN can be eliminated. 
Additionally, leading MLaaS providers can integrate pre-built 3D-CNN 
models into their offerings for training HSI data, thereby reducing the 
time and effort required for model development, especially for individ-

uals in the agriculture domain who may have limited machine learning 
expertise.

In summary, the application of 3D-CNNs with hyperspectral data 
for disease and defective crop detection is a promising research area 
with several open research questions. Collecting and sharing HSI data 
on scale, identifying informative spectral bands, developing transfer 
and active learning techniques, and implementing light-weight archi-

tectures are some of the key research areas that can be considered for 
future work. The advancement of this research will lead to more accu-

rate and efficient disease and defective crop detection, which can have 
significant impacts on the agricultural industry.
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