Afficher la notice abrégée

dc.contributor.authorKrosney, Alexander E.
dc.contributor.authorSotoodeh, Parsa
dc.contributor.authorHenry, Christopher J.
dc.contributor.authorBeck, Michael A.
dc.contributor.authorBidinosti, Christopher P.
dc.date.accessioned2023-07-17T20:19:18Z
dc.date.available2023-07-17T20:19:18Z
dc.date.issued2023-07-06
dc.identifier.citationKrosney, Alexander E., Parsa Sotoodeh, Christopher J. Henry, Michael A. Beck, and Christopher P. Bidinosti. "Inside out: transforming images of lab-grown plants for machine learning applications in agriculture." Frontiers in Artificial Intelligence 6 (2023): Sec. AI in Food, Agriculture and Water. DOI: 10.3389/frai.2023.1200977.en_US
dc.identifier.issn2624-8212
dc.identifier.urihttps://hdl.handle.net/10680/2087
dc.description.abstractMachine learning tasks often require a significant amount of training data for the resultant network to perform suitably for a given problem in any domain. In agriculture, dataset sizes are further limited by phenotypical differences between two plants of the same genotype, often as a result of different growing conditions. Synthetically-augmented datasets have shown promise in improving existing models when real data is not available.en_US
dc.description.sponsorship"This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program (Nos. RGPIN-2018-04088 and RGPIN-2020-06191), Compute Canada (now Digital Research Alliance of Canada) Resources for Research Groups competition (No. 1679), Western Economic Diversification Canada (No. 15453), and the Mitacs Accelerate Grant program (No. IT14120)."en_US
dc.description.urihttps://www.frontiersin.org/articles/10.3389/frai.2023.1200977/fullen_US
dc.language.isoenen_US
dc.publisherFrontiersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine learningen_US
dc.titleInside out: transforming images of lab-grown plants for machine learning applications in agricultureen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/frai.2023.1200977en_US


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée